Chronic mild stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism
PBN-AR
Instytucja
Instytut Farmakologii im. Jerzego Maja Polskiej Akademii Nauk
Informacje podstawowe
Główny język publikacji
en
Czasopismo
PSYCHONEUROENDOCRINOLOGY
ISSN
0306-4530
EISSN
Wydawca
PERGAMON-ELSEVIER SCIENCE LTD
DOI
URL
Rok publikacji
2016
Numer zeszytu
Strony od-do
11-21
Numer tomu
66
Identyfikator DOI
Liczba arkuszy
Słowa kluczowe
en
Hypothalamus
Chronic mild stress
Prenatal stress
Affective disorders
Metalloproteinases
Nerve growth factor
Streszczenia
Język
en
Treść
Stress is generally a beneficial experience that motivates an organism to action to overcome the stressful challenge. In particular situations, when stress becomes chronic might be harmful and devastating. The hypothalamus is a critical coordinator of stress and the metabolic response; therefore, disruptions in this structure may be a significant cause of the hormonal and metabolic disturbances observed in depression. Chronic stress induces adverse changes in the morphology of neural cells that are often associated with a deficiency of neurotrophic factors (NTFs); additionally, many studies indicate that insufficient NTF synthesis may participate in the pathogenesis of depression. The aim of the present study was to determine the expression of the nerve growth factor (NGF) in the hypothalamus of male rats subjected to chronic mild stress (CMS) or to prenatal stress (PS) and to PS in combination with an acute stress event (AS). It has been found that chronic mild stress, but not prenatal stress, acute stress or a combination of PS with AS, decreased the concentration of the mature form of NGF (m-NGF) in the rat hypothalamus. A discrepancy between an increase in the Ngf mRNA and a decrease in the m-NGF levels suggested that chronic mild stress inhibited NGF maturation or enhanced the degradation of this factor. We have shown that NGF degradation in the hypothalamus of rats subjected to chronic mild stress is matrix metalloproteinase-dependent and related to an increase in the active forms of some metalloproteinases (MMP), including MMP2, MMP3, MMP9 and MMP13, while the NGF maturation process does not seem to be changed. We suggested that activated MMP2 and MMP9 potently cleave the mature but not the pro- form of NGF into biologically inactive products, which is the reason for m-NGF decomposition. In turn, the enhanced expression of Ngf in the hypothalamus of these rats is an attempt to overcome the reduced levels of m-NGF. Additionally, the decreased level of m-NGF together with the increased level of pro-NGF can decrease TrkA-mediated neuronal survival signalling and enhance the action of pro-NGF on the p75(NTR) receptor, respectively, to evoke pro-apoptotic signalling. This hypothesis is supported by elevated levels of the caspase-3 mRNA in the hypothalamus of rats subjected to chronic mild stress. (C) 2015 Elsevier Ltd. All rights reserved.
Cechy publikacji
ORIGINAL_ARTICLE
Inne
System-identifier
729959
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych