Migraine diagnosis support system based on classifier ensemble
PBN-AR
Instytucja
Wydział Elektroniki (Politechnika Wrocławska)
Książka
Tytuł książki
ICT innovations 2014 : world of data
Data publikacji
2015
ISBN
9783319098784
Wydawca
Springer
Publikacja
Główny język publikacji
eng
Tytuł rozdziału
Migraine diagnosis support system based on classifier ensemble
Rok publikacji
2015
Strony (od-do)
329-339
Numer rozdziału
Identyfikator DOI
Liczba arkuszy
0,8
Hasło encyklopedyczne
Autorzy
(liczba autorów: 4)
Pozostali autorzy
+ 2
Słowa kluczowe
pol
uczenie maszyn
komitety klasyfikatorów
informatyka medyczna
Streszczenia
Język
eng
Treść
A valid diagnosis of migraine is a non-trivial decision problem. This is due to the fact that migraine can manifest wide range of varied symptoms. Thus, designing a computer aided diagnosis system for that problem remains still a very interesting topic. In this paper we present an ensemble classifier system designed for headache diagnosis. We assumed that the system should make fast initial diagnosis based on an analysis of data collected in the questionnaire only. Such an assumption eliminated possibility of application of most classical classification algorithms as they could not obtain decent level of accuracy. Therefore, we decided to apply an ensemble solution. Although it is clear that ensemble should consists of complementary classifiers, there is no guidance on how to choose ensemble size and ensure its diversity. Thus, we applied two stages strategy. Firstly, large pool of elementary classifiers were prepared. Its diversity was ensured by selecting algorithms of different types, structures, and learning algorithms. Secondly, we determined optimal size of the ensemble and selected its constituents using exhaustive search approaches. Results of experiments, which were carried on dataset collected in University of Novi Sad, shows that proposed system significantly outperformed all classical methods. Additionally we present analysis of diversity and accuracy correlation for tested systems.
Inne
System-identifier
000194968
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych