Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications
PBN-AR
Instytucja
Wydział Matematyczno-Przyrodniczy (Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie)
Informacje podstawowe
Główny język publikacji
en
Czasopismo
SOLAR ENERGY MATERIALS AND SOLAR CELLS
ISSN
0927-0248
EISSN
Wydawca
ELSEVIER SCIENCE BV
DOI
URL
Rok publikacji
2013
Numer zeszytu
Strony od-do
624-631
Numer tomu
117
Identyfikator DOI
Liczba arkuszy
Autorzy
(liczba autorów: 10)
Pozostali autorzy
+ 9
Słowa kluczowe
en
Solid-state dye-sensitized solar cell (DSSC)
TiO2 Nanocrystals
Nitrogen doping
Laser pyrolysis
Electron paramagnetic resonance (EPR)
Density functional theory (DFT)
Streszczenia
Język
en
Treść
Nitrogen-doped titanium dioxide (TiO2) is considered as a promising photocatalytic material due to its optical absorption extended in the visible region compared to pure TiO2. In the field of photovoltaic applications, dye-sensitized solar cells based on N-doped nanocrystalline titania electrodes have demonstrated improved performance due to the beneficial effects of nitrogen on the electronic and optical properties of TiO2. In this context, we report on the influence of nitrogen doping on the performance of solid-state dye-sensitized solar cells, starting from TiO2 and N-TiO2 nanocrystals synthesized by laser pyrolysis. Using an integrated approach based on experimental and theoretical investigations, the relationship between the local electronic features of the starting metal oxide materials and device operation is described. We demonstrate that the short-circuit current density of the solar cells based on an N-doped TiO2 electrode increases by more than 10% compared to that of pure anatase. This improvement is clearly associated with the extended absorption of the doped electrode, suggesting that alternative charge generation mechanisms occur in the cells in addition to the conventional dye absorption. Computer simulations on isolated nanoclusters, as well as electron paramagnetic resonance (EPR) experiments, confirm that nitrogen atoms in the presence of oxygen vacancies can explain the introduction of additional energy states near the valence band of TiO2. Surface states associated with nitroxide radicals are also suggested to act as charge traps under illumination. These aspects confirm the strong potentialities of optically-active metal oxides for photovoltaic applications.
Cechy publikacji
ORIGINAL_ARTICLE
Inne
System-identifier
569484
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych