Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals
PBN-AR
Instytucja
Instytut Fizyki Molekularnej Polskiej Akademii Nauk
Informacje podstawowe
Główny język publikacji
en
Czasopismo
PHYSICAL REVIEW E
ISSN
2470-0045
EISSN
Wydawca
DOI
URL
Rok publikacji
2016
Numer zeszytu
1
Strony od-do
brak
Numer tomu
93
Link do pełnego tekstu
Identyfikator DOI
Liczba arkuszy
Streszczenia
Język
en
Treść
Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples.
Cechy publikacji
ORIGINAL_ARTICLE
Inne
System-identifier
738610
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych