Rich-club organization in effective connectivity among cortical neurons
PBN-AR
Instytucja
Wydział Fizyki i Informatyki Stosowanej (Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie)
Informacje podstawowe
Główny język publikacji
EN
Czasopismo
The Journal of Neuroscience
ISSN
0270-6474
EISSN
1529-2401
Wydawca
The Society for Neuroscience
DOI
Rok publikacji
2016
Numer zeszytu
3
Strony od-do
670--684
Numer tomu
36
Link do pełnego tekstu
Identyfikator DOI
Liczba arkuszy
1.14
Autorzy
(liczba autorów: 14)
Pozostali autorzy
+ 13
Słowa kluczowe
EN
transfer entropy
rich club
microcircuits
information transfer
effective connectivity
Streszczenia
Język
EN
Treść
The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array ( 60 mu m spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a "rich club." We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory.
Cechy publikacji
original article
peer-reviewed
Inne
System-identifier
idp:103502
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych