Application of $\alpha$-stable mutation in a hierarchic evolutionary inverse solver
PBN-AR
Instytucja
Wydział Informatyki, Elektroniki i Telekomunikacji (Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie)
Informacje podstawowe
Główny język publikacji
EN
Czasopismo
Journal of Computational Science
ISSN
1877-7503
EISSN
1877-7511
Wydawca
Elsevier Science BV
DOI
Rok publikacji
2016
Numer zeszytu
1
Strony od-do
261--269
Numer tomu
17
Link do pełnego tekstu
Identyfikator DOI
Liczba arkuszy
0.7
Autorzy
(liczba autorów: 2)
Pozostali autorzy
+ 1
Słowa kluczowe
EN
hierarchic genetic strategy
inverse problems
multi-deme genetic search
α-stable mutation
Streszczenia
Język
EN
Treść
The multi-deme Hierarchic Genetic Strategy (HGS) developed at the end of the 20th century already proved its capabilities of solving ill-conditioned multi-modal continuous global optimization problems, both benchmarks and real-world engineering inversions. As a standard it uses the mutation operator based on the normal probability distribution. It is a common choice in the continuous evolutionary optimization, but in practice it exhibits some properties that significantly reduce its exploratory abilities, which are crucial in the search for multiple solutions. Those drawbacks can be largely overcome if we replace the normal distribution with a special α-stable distribution for α < 2. In this paper, we study the application of such distribution in the HGS mutation operator. First, we execute standard multi-modal benchmarks to show the impact of particular values of the stable distribution parameters. Then, using selected values of those parameters we employ the HGS with the α-stable mutation in solving an advanced ill-conditioned inverse parametric problem connected to the oil and gas resource investigation. The obtained results show that the α-stable mutation delivers more solutions than the classical normal mutation within a slightly better time budget. Another important conclusion is that the number of solutions is significantly more predictable in the case of α-stable mutation, which is a very advantageous feature from the point of view of the application of a stochastic strategy in the inverse problem solution.
Cechy publikacji
original article
peer-reviewed
Inne
System-identifier
idp:103320
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych