Efficiency of linear and non-linear classifiers for gas identification from electrocatalytic gas sensor
PBN-AR
Instytucja
Wydział Chemiczny (Politechnika Gdańska)
Informacje podstawowe
Główny język publikacji
ENG
Czasopismo
Metrology and Measurement Systems
ISSN
0860-8229
EISSN
Wydawca
DOI
URL
Rok publikacji
2013
Numer zeszytu
20/3
Strony od-do
501-512
Numer tomu
Link do pełnego tekstu
Identyfikator DOI
Liczba arkuszy
Słowa kluczowe
CYCLIC VOLTAMMETRY
DATA PRE-PROCESSING
ELECTROCATALYTIC SENSOR
PARTIAL LEAST SQUARES DISCRIMINANT ANALYSIS
SUPPORT VECTOR MACHINE
Streszczenia
Język
Treść
Electrocatalytic gas sensors belong to the family of electrochemical solid state sensors. Their responses are acquired in the form of I-V plots as a result of application of cyclic voltammetry technique. In order to obtain information about the type of measured gas the multivariate data analysis and pattern classification techniques can be employed. However, there is a lack of information in literature about application of such techniques in case of standalone chemical sensors which are able to recognize more than one volatile compound. In this article we present the results of application of these techniques to the determination from a single electrocatalytic gas sensor of single concentrations of nitrogen dioxide, ammonia, sulfur dioxide and hydrogen sulfide. Two types of classifiers were evaluated, i.e. linear Partial Least Squares Discriminant Analysis (PLS-DA) and nonlinear Support Vector Machine (SVM). The efficiency of using PLS-DA and SVM methods are shown on both the raw voltammetric sensor responses and pre-processed responses using normalization and auto-scaling.
Inne
System-identifier
124555
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych