A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems
PBN-AR
Instytucja
Wydział Elektroniki, Telekomunikacji i Informatyki (Politechnika Gdańska)
Informacje podstawowe
Główny język publikacji
ENG
Czasopismo
Journal of Computational Science
ISSN
1877-7503
EISSN
Wydawca
DOI
URL
Rok publikacji
2016
Numer zeszytu
Strony od-do
28-37
Numer tomu
12
Identyfikator DOI
Liczba arkuszy
Autorzy
Słowa kluczowe
MULTI-FIDELITY, MULTILEVEL, VARIABLE FIDELITY, SURROGATE-MODEL-ASSISTED EVOLUTIONARY ALGORITHM, EX-PENSIVE OPTIMIZATION
Streszczenia
Język
Treść
Integrating data-driven surrogate models and simulation models of different accuracies (or fideli-ties) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple fidelities in global optimization is a major challenge. To address it, the two major contributions of this paper include: (1) development of a new multi-fidelity surrogate-model-based optimization framework, which substantially improves reliability and efficiency of optimiza-tion compared to many existing methods, and (2) development of a data mining method to address the discrepancy between the low- and high-fidelity simulation models. A new efficient global optimization method is then proposed, referred to as multi-fidelity Gaussian process and radial basis function-model-assisted memetic differential evolution. Its advantages are verified by mathematical benchmark problems and a real-world antenna design automation problem.
Inne
System-identifier
134609
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych