An Improved Objective Function for Modal-Based Damage Identification Using Substructural Virtual Distortion Method
PBN-AR
Instytucja
Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Informacje podstawowe
Główny język publikacji
EN
Czasopismo
Applied Sciences
ISSN
2076-3417
EISSN
Wydawca
DOI
Rok publikacji
2019
Numer zeszytu
5
Strony od-do
1-17
Numer tomu
9
Link do pełnego tekstu
Identyfikator DOI
Liczba arkuszy
Autorzy
Słowa kluczowe
EN
structural health monitoring (SHM)
damage identification
substructure
virtual distortion method (VDM)
frequency response
Streszczenia
Język
EN
Treść
Damage identification based on modal parameters is an important approach in structural health monitoring (SHM). Generally, traditional objective functions used for damage identification minimize the mismatch between measured modal parameters and the parameters obtained from the finite element (FE) model. However, during the optimization process, the repetitive calculation of structural modes is usually time-consuming and inefficient, especially for large-scale structures. In this paper, an improved objective function is proposed based on certain characteristics of the peaks of the frequency response function (FRF). Traditional objective functions contain terms that quantify modal shapes and/or natural frequencies. Here, it is proposed to replace them by the FRF of the FE model, which allows the repeated full modal analysis to be avoided and thus increases the computational efficiency. Moreover, the efficiency is further enhanced by employing the substructural virtual distortion method (SVDM), which allows the frequency response of the FE model of the damaged structure to be quickly computed without the costly re-analysis of the entire damaged structure. Finally, the effectiveness of the proposed method is verified using an eight-story frame structure model under several damage cases. The damage location and extent of each substructure can be identified accurately with 5% white Gaussian noise, and the optimization efficiency is greatly improved compared with the method using a traditional objective function.
Cechy publikacji
original-article
Inne
System-identifier
6345
CrossrefMetadata from Crossref logo
Cytowania
Liczba prac cytujących tę pracę
Brak danych
Referencje
Liczba prac cytowanych przez tę pracę
Brak danych