×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB


  • Tytuł artykułu:
    Charakterystyka składu mieszaniny nanorurek węglowych na podstawie spektroskopii absorpcyjnej UV-VIS-NIR, spektroskopii ramanowskiej, analizy termograwimetrycznej i mikroskopii elektronowej
  • Tytuły w innych językach:
    Characteristics of the composition of carbon nanotubes mixture based on the absorption spectroscopy in UV-VIS-NIR range, Raman spectroscopy, thermal gravimetric analysis and electron microscopy
  • Opublikowany w czasopiśmie:
  • Rocznik 2016,  tom 4
  • 107-118
  • Oryginalny artykuł naukowy
  • polski
  • article-98c6635d-cada-4372-916f-71d5e98c249b
  • 26.05.2016 21:25:40
  • Paweł Łukaszczuk autor [1]
  • [1] Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Techniki Morskiej i Transportu, Katedra Inżynierii Bezpieczeństwa i Energetyki
  • Brak afiliacji
Nie znaleziono publikacji cytujących ten artykuł
  1. Bacsa R.R., Laurent C., Peigney A., Puech P., Hubel H., Dunstan D., Bacsa W.S.: Structural and mechanical properties of double wall carbon nanotubes. Nano Science and Technology Institute (NSTI) Nanotech 3 (2004), 214-217.
  2. Bronikowski M.J., Willis P.A., Colbert D.T., Smith K.A., Smalley R.E.: Gas-phase produc-tion of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, Journal of Vacuum Science & Technology A 19(4) (2001), 1800-1805.
  3. Collins P.G., Avouris P.: Nanotubes for Electronics, Scientific American 283(6), (2000), 62-69.
  4. Che G., Lakshmi B. B., Martin C.R., Fisher E.R.: Chemical Vapor Deposition Based Synthe-sis of Carbon Nanotubes and Nanofibers Using a Template Method, Chemistry of Materials 10 (1998), 260-267.
  5. Chrzanowska J., Hoffman J., Małolepszy A., Mazurkiewicz M., Kowalewski T.A., Szymanski Z., Stobinski L.: Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength, Physica Status Solid B 252 (8) (2015), 1860–1867.
  6. Costa S., Borowiak-Palen E., Kruszyńska M., Bachmatiuk A., Kaleńczuk R.J.: Characterization of carbon nanotubes by Raman spectroscopy, Materials Science-Poland, 26 (2) (2008), 433-441.
  7. Dresselhaus M.S., Dresselhaus G., Saito R., Jorio A.: Raman spectroscopy of carbon nanotubes. Physics Reports 409 (2) (2005), 47-99.
  8. Edelson E.: Carbon Allotropes: And Then There Were Three. MOSAIC 23 (3) (1992), 1-11.
  9. Eigler D.M., Schweizer E.K.: Positioning single atoms with a scanning tunnelling microscope., Nature, 344 (1990), 524-526.
  10. Feynman R.P.: Plenty of Room at the Bottom. Transkrypt wystąpienia w Pasadenie dla American Physical Society z grudnia 1959 roku.
  11. Georgakilas V., Perman J.A. , Tucek J., Zboril R.: Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews 115 (11) (2015), 4744-4822.
  12. Goenka S., Sant V., Sant S.: Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release 173 (2014) 75-88.
  13. Hároz E. H., Rice W.D., Lu B.Y., Ghosh S., Hauge R.H., Weisman R.B., Doorn S.K., Kono J.: Enrichment of Armchair Carbon Nanotubes via Density Gradient Ultracentrifugation: Raman Spectroscopy Evidence. ACS Nano 4 (4) (2010), 1955-1962.
  14. Hvolbæk B., Janssens T.V.W., Clausen B.S. , Falsig H., Christensen C.H., Nørskov J.K.: Catalytic activity of Au nanoparticles. Nanotoday, 2 (4), (2007), 14-18.
  15. Iijima S.: Helical microtubules of graphitic carbon., Nature, 354 (1991), 56-58.
  16. Kim D.H., Lee S.Y., Jin J.E., Kim G.T., Lee D.J.: Electrical conductivity enhancement of metallic single-walled carbon nanotube networks by CoO decoration, Physical Chemistry Chemical Physics, 16 (2014), 6980-6985.
  17. Klimovskii I.I., Markovets V.V.: The carbon phase diagram near the solid-liquid-vapor triple point. International Scientific Journal for Alternative Energy and Ecology 5(49) (2007), 111-116.
  18. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E.: C60: Buckminsterfullerene. Nature, 318 (1985), 162 - 163.
  19. Kuryliszyn-Kudelska I., Małolepszy A., Mazurkiewicz M., Stobinski L., Dobrowolski W.: Magnetic Properties of “As-Prepared” and Chemically Modified Multiwalled Carbon Nanotubes. Acta Physica Polonica A 119 (5) (2011)597-599.
  20. Laurent Ch., Flahaut E., Peigneya A.: The weight and density of carbon nanotubes versus the number of walls and diameter, Carbon 48 (10), (2010), 2994-2996.
  21. Miyata Y., Yanagi K., Maniwa Y., Kataura H.: Optical Evaluation of the Metal-to -Semiconductor Ratio of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C 112 (2008), 13187-13191.
  22. Novoselov K.S., Geim A. K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (5696) (2004), 666-669.
  23. Odom T.W., Huang J.L., Kim P., Lieber C.M.: Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391 (1998), 1, 62-64.
  24. Popov V.N.: Carbon nanotubes: properties and application. Materials Science and Engineering R 43 (2004) 61-102.
  25. Radushkevich, L.V., Lukyanovich M.V.: About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate. Soviet Journal of Physical Chemistry, 26, (1952) 88-95.
  26. Ruska E.: The Development Of The Electron Microscope And Of Electron Microscopy. Nobel lecture, December 8, (1986).
  27. Sonström P., Bäumer M.: Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts, Physical Chemistry Chemical Physics, 13 (2011), 19270-19284.
  28. Strano M.S., Zheng M., Jagota A., Onoa G.B., Heller D.A., Barone P.W., Usrey M.L.: Un-derstanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy., Nano Letters 4 (4) (2004), 543-550.
  29. Tang Z.K., Zhang L., Wang N., Zhang X.X., Wen G.H., Li G.D., Wang J.N., Chan C.T., Sheng P.: Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes. Science, 292 (2001), 2462-2465.
  30. Tiwari J.N., Tiwari R.N., Kim K.S.: Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57 (2012), 724-803.
  31. Wijeratne S.S., Harris N.C., Kiang C.H.: Helicity Distributions of Single-Walled Carbon Nanotubes and Its Implication on the Growth Mechanism. Materials 3 (2010), 2725-2734.
  32. Yadav B.C., Kumar R.: Structure, properties and applications of fullerenes. International Journal of Nanotechnology and Applications 2(1) (2008), 15-24.
Artykuł nie posiada rozwiązanych cytowań