×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB


  • 02.06.2017 11:00:26
  • DARIUSZ BORUCZKOWSKI [1]
  • KATARZYNA PAWELEC [1] [2]
  • MACIEJ BORUCZKOWSKI [3]
  • DOMINIKA GŁADYSZ [1]
  • [1] Polski Bank Komórek Macierzystych
  • [2] Katedra i Klinika Pediatrii, Hematologii i Onkologii, Warszawski Uniwersytet Medyczny,
  • [3] Katedra i Zakład Immunologii Klinicznej, Uniwersytet Medyczny w Poznaniu,
  • Brak afiliacji
Nie znaleziono publikacji cytujących ten artykuł
  1. Boruczkowski D. Krew pępowinowa. Przeszłość, teraźniejszość, przyszłość. GinPolMedProject 2009;4(14):73-84.
  2. Gładysz D, Pawelec K, Baran J, Boruczkowski D. Stem cell transplantations: Famicord Group own experience. Cell and Organ Transplantology 2013;1(1):35–38.
  3. Pawelec K, Boruczkowski D, Ołdak T et al. Combined umbilical cord blood and bone marrow transplantation from a sibling in a patient with Fanconi anemia. Central European Journal of Immunology 2013;38(3):399-402.
  4. Boruczkowski D, Pawelec K, Boruczkowski M, Gładysz D. Komórki macierzyste przyszłością biomedycyny. Transformacje 2013;1-2(76-77):462-477.
  5. Schmitt A, van Griensven M, Imhoff B et al. Application of Stem Cells in Orthopedics. Stem Cells International, vol. 2012.
  6. Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell 2002;13:4279-4295.
  7. Gang EJ, Jeong JA, Hong SH et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 2004;22:617-624.
  8. Kern S, Eichler H, Stoeve J et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood or adipose tissue. Stem Cells 2004;24:1294-1301.
  9. Deans RJ, Moseley AM. Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology 2000; 28:875-884.
  10. Barry F, Boynton R, Murphy I et al. SH-3 and SH-4 antibodies recognized distinct epitopes on CD73 from human mesenchymal stem cells. Biochemical and Biophysical Research Communications 2001;289:519-524.
  11. Meirelles L. da Silva, Fontes AM, Covas DT et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews 2009;20(5-6):419-427.
  12. Iyer SS, Rojas M. Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opinion on Biological Therapy 2008;8:569-581.
  13. Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends in Molecular Medicine 2012;18:128-134.
  14. Krampera M, Glennie S, Dyson J et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003;101:3722-3729.
  15. Maitra B, Szekely E, Gjini K et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplantation 2004;33:597-604.
  16. Baksh D, Yao R, Tuan R. Comparison of Proliferative and Multilineage Differentiation Potential of Human Mesenchymal Stem Cells Derived from Umbilical Cord and Bone Marrow. Stem Cells 2007;25:1384-1392.
  17. Prassana SJ, Gopalakrishnan D, Shankar SR et al. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 2010;5:e9016.
  18. Boruczkowski D, Ołdak T, Pawelec K et al. The collection and cultivation of umbilical cord derived cells for potential clinical use. Bone Marrow Transplant 2012;47(supl 1):S280 – S281.
  19. Czaplicka I, Murzyn M, Olkowicz A i wsp. Badania laboratoryjne mezenchymalnych komórek macierzystych pochodzących z galarety Whartona. Onkologia Polska 2012, 15(supl.1): p085.
  20. Murzyn M, Czaplicka I, Olkowicz A et al. The number of mesenchymal cells from Wharton jelly is not affected by the fragment of the umbilical cord from which the cells were isolated. Bone Marrow Transplant 2013;(48)(supl 2):S111.
  21. Uchwała Komisji Bioetycznej Lubelskiego Uniwersytetu Medycznego, numer KE-0254/11/2011 z dnia 27 stycznia 2011 roku.
  22. Uchwała Komisji Bioetycznej Śląskiego Uniwersytetu Medycznego, numer KNW/0022/KB1/43/12 z dnia 20 marca 2012 roku.
  23. Uchwała Komisji Bioetycznej Śląskiego Uniwersytetu Medycznego, numer KNW/0022/KB1/43/I/12 z dnia 22 maja 2012 roku.
  24. Uchwała Komisji Bioetycznej Uniwersytetu Medycznego w Poznaniu, numer 1141/12 z dnia 03 stycznia 2013 roku.
  25. Opinia Komisji Bioetycznej Uniwersytetu Medycznego we Wrocławiu, numer KB 17 z dnia 11 stycznia 2013 roku.
  26. Uchwała Komisji Bioetycznej Uniwersytetu Mikołaja Kopernika w Toruniu, Collegium Medicum w Bydgoszczy, numer KB 69/2013 z dnia 26 lutego 2013 roku.
  27. Uchwała Komisji Bioetycznej Uniwersytetu Mikołaja Kopernika w Toruniu, Collegium Medicum w Bydgoszczy, numer KB 78/2013.
  28. Uchwała Komisji Bioetycznej przy Uniwersytecie Medycznym w Lublinie numer KE-0254/172/2013 z dnia 23 maja 2013 roku.
  29. Uchwała Komisji Bioetycznej Okręgowej Izby Lekarskiej w Częstochowie numer K.B.Cz. 0004/2014 z dnia 29 października 2014 roku.
  30. Uchwała Komisji Bioetycznej przy Uniwersytecie Medycznym w Lublinie numer KE-0254/274/2014 z dnia 30 października 2014 roku.
  31. Gladysz D, Murzyn M, Czaplicka I et al. The first in Poland follow-up of 10 patients with steroid-refractory graft-versus-host disease treated with intravenously applied Wharton’s jelly-derived mesenchymal stem cells as a salvage therapy. Bone Marrow Transplant 2014;Volume 49(supl 1):S537.
  32. Cruz M, Dissaranan C, Cotleur A et al. Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet Gynecol Int 2012;2012: 612946.
  33. Corcos J, Loutochin O, Campeau L et al. Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol Urodyn 2011; 30(3): 447-455.
  34. Xu Y, Song YF, Lin ZX. Transplantation of muscle-derived stem cells plus biodegradable fibrin glue restores the urethral sphincter in a pudendal nerve-transected rat model. Braz J Med Biol Res 2010;43(11):1076-1083.
  35. Kim SO, Na HS, Kwon D et al. Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol Int 2011;86(1):110-116.
  36. Wu G, Song Y, Zheng X, Jiang Z. Adipose-derived stromal cell transplantation for treatment of stress urinary incontinence. Tissue Cell 2011;43(4):246-253.
  37. Chermansky CJ, Tarin T, Kwon DD et al. Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology 2004;63(4):780-785.
  38. Lim JJ, Jang JB, Kim JY et al. Human umbilical cord blood mononuclear cell transplantation in rats with intrinsic sphincter deficiency. J Korean Med Sci 2010;25(5): 663-670.
  39. Lin G, Wang G, Banie L et al. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy 2010;12(1):88-95.
  40. Zhao W, Zhang C, Jin C et al. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol 2011;59(1):155-163.
  41. Fu Q, Song XF, Liao GL, Deng CL, Cui L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology 2010;75(3):718-723.
  42. Imamura T, Ishizuka O, Kinebuchi Y et al. Implantation of autologous bone-marrow-derived cells reconstructs functional urethral sphincters in rabbits. Tissue Eng Part A 2011;17(7-8):1069-1081.
  43. www.clinicaltrials.gov
  44. Salcedo L, Penn M, Damaser M et al. Functional outcome after anal sphincter injury and treatment with mesenchymal stem cells. Stem Cells Transl Med 2014;3(6):760-767.
  45. Aghaee-Afshar M, Rezazadehkermani M, Asadi A et al. Potential of human umbilical cord matrix and rabbit bone marrow derived mesenchymal stem cells in repair of surgically incised rabbit external anal sphincter. Disease Colon Rectum 2009;52:1753-1761.
  46. White AB, Keller PW, Acevedo JF et al. Effect of myogenic stem cells on contractile properties of the repaired and unrepaired transected external anal sphincter in an animal model. Obstet Gynecol 2010;115: 815-823.
  47. Craig JB LF, Nistor G, Motakef S, Pham Q, Keirstead H. Allogenic myoblast transplantation in the rat anal sphincter. Female Pelvic Med Reconstr Surg 2010;16:205-208.
  48. Kajbafzadeh AM, Elmi A, Talab SS et al. Functional external anal sphincter reconstruction for treatment of anal incontinence using muscle progenitor cell auto grafting. Disease Colon Rectum 2010;53:1415-1421.
  49. Frudinger A, Kolle D, Schwaiger W et al. Muscle-derived cell injection to treat anal incontinence due to obstetric trauma: pilot study with 1 year follow-up. Gut 2010;59:55-61.
  50. Romaniszyn M, Rozwadowska N, Nowak M et al. Successful implantation of autologous muscle-derived stem cells in treatment of faecal incontinence due to external sphincter rupture. Int J Colorectal Dis 2013;28(7):1035–1036.
  51. Ochoa I, Peña E, Andreu EJ et al. Mechanical properties of cross-linked collagen meshes after human adipose derived stromal cells seeding. J Biomed Mater Res A 2011;96(2):341-348.
  52. Dorin RP, Atala A, Defilippo RE. Bioengineering a vaginal replacement using a small biopsy of autologous tissue. Semin Reprod Med 2011;29:38-44.
  53. Faulkner SD, Ruff CA, Fehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle. Semin Pediatr Neurol 2013;20(2):146-153.
  54. Harris DT. Cord blood stem cells: a review of potential neurological applications. Stem Cell Rev 2008;4(4):269-274.
  55. Ruff CA, Faulkner SD, Fehlings MG. The potential for stem cell therapies to have an impact on cerebral palsy: opportunities and limitations. Dev Med Child Neurol 2013;55(8): 689-697.
  56. Purandare C, Shitole DG, Belle V et al. Therapeutic potential of autologous stem cell transplantation for cerebral palsy. Case Rep Transplant 2012;2012:825289.
  57. Li M, Yu A, Zhang F et al. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells. J Transl Med 2012;10:100.
  58. Jensen A, Hamelmann E. First autologous cell therapy of cerebral palsy caused by hypoxic-ischemic brain damage in a child after cardiac arrest-individual treatment with cord blood. Case Rep Transplant 2013;2013:951827.
  59. Wang L, Ji H, Zhou J et al. Therapeutic potential of umbilical cord mesenchymal stromal cells transplantation for cerebral palsy: a case report. Case Rep Transplant 2013;2013:146347.
  60. Bae SH, Lee HS, Kang MS et al. The levels of pro-inflammatory factors are significantly decreased in cerebral palsy patients following an allogeneic umbilical cord blood cell transplant. Int J Stem Cells 2012;5(1):31-38.
  61. Min K, Song J, Kang JY et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells 2013;31(3):581-91.
  62. Wang X, Cheng H, Hua R et al. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy 2013;15(12):1549-1562.
  63. Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O et al. Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy 2014;16(6): 810-820.
  64. Chen G, Wang Y, Xu Z et al. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med 2013;Jan 26;11: 21.
  65. Boruczkowski D, Czaplicka I, Murzyn M, Olkowicz A, Boruczkowski M. Perspektywy zastosowania macierzystych komórek mezenchymalnych w leczeniu powikłań toksycznych chemioterapii. Onkologia Polska 2012;15(supl.1): p082.
  66. Magnasco A et al. Mesenchymal Stem Cells Protective Effect in Adriamycin Model of Nephropathy. Cell Transplantation 2008;17(10-11):1157 -1167.
  67. Di GH et al. Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy 2012;14(4):412 – 422.
  68. Ortiz L et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003;100(14):8407-8411.
  69. Moodley Y et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 2009;175(1):303-313.
  70. Yuan L et al. VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2011;300(1): F207-F218.
  71. Gopinath S et al. Human umbilical cord blood derived stem cells repair doxorubicin-induced pathological cardiac hypertrophy in mice. Biochem Biophys Res Commun 2010;395(3):367-372.
  72. Fekete N et al. Effect of high dose irradiation on human bone marrow-derived MSCs. Tissue Engineering Part C 2014.
Artykuł nie posiada rozwiązanych cytowań