×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

The observable algebra of lattice QCD

Artykuł
Czasopismo : REPORTS ON MATHEMATICAL PHYSICS   Tom: 55, Zeszyt: 2, Strony: 199-210
Jerzy Kijowski [1] , Gerd Rudolph
2005 angielski
Identyfikatory
-
Słowa kluczowe
-
Abstrakty ( angielski )
-
Quantum chromodynamics (QCD) is studied on a finite latticewithin the Hamiltonian approach. First, the field algebra AΛ as comprising a gluonic part, with basic building block being the crossed product C*-algebra C(G) ⊗ α G, and a fermionic (CAR-algebra) part generated by the quark fields, is discussed. By classical arguments, AΛ has a unique (up to unitary equivalence) irreducible representation. Next, the algebra OΛi of internal observables is defined as the algebra of gauge invariant fields, satisfying the Gauss law. In order to take into account correlations of field degrees of freedom insidewith the “rest of the world”, OΛi is tensorized with the algebra of gauge invariant operators at infinity. This way, the full observable algebra OΛ is constructed. It turns out that its irreducible representations are labelled by the ℤ 3 -valued global gluonic boundary flux, leading to three inequivalent charge superselection sectors. By the global Gauss law, these can be labelled in terms of the global colour charge carried by quark fields.
Bibliografia
-
  1. Doplicher, S.& Haag, R.& Roberts, J., Commun. Math. Phys., vol. 23, 1971, p.199, Commun. Math. Phys., vol. 35, 1974, p.51
  2. Doplicher, S.& Roberts, J., Commun. Math. Phys., vol. 131, 1990, p.51
  3. Buchholz, D., Commun. Math. Phys., vol. 85, 1982, p.49, Phys. Lett., vol. B174, 1986, p.331
  4. Fröhlich, J., Commun. Math. Phys., vol. 66, 1979, p.223
  5. Strocchi, F.& Wightman, A., J. Math. Phys., vol. 15, 1974, p.2198
  6. Strocchi, F., Phys. Rev., vol. D 17, 1978, p.2010
  7. Seiler, E., "Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics", Lecture Notes in Physics, vol. vol. 159, 1982
  8. E. Seiler: “Constructive Quantum Field Theory: Fermions”, in Gauge Theories: Fundamental Interactions and Rigorous Results, eds. P. Dita, V. Georgescu and R. Purice.
  9. Kijowski, J.& Rudolph, G.& Thielman, A., Commun. Math. Phys., vol. 188, 1997, p.535
  10. Kijowski, J.& Rudolph, G.& Śliwa, C., Lett. Math. Phys., vol. 43, 1998, p.299
  11. Kijowski, J.& Rudolph, G.& Śliwa, C., Annales H. Poincaré, vol. 4, 2003, p.1137
  12. Kijowski, J.& Rudolph, G., J. Math. Phys., vol. 43, 2002, p.1796-1808
  13. J. Kijowski and G. Rudolph, Charge Superselection Sectors for QCD on the Lattice, hep-th/0404155, to appear in J. Math. Phys.
  14. Fredenhagen, K.& Marcu, M., Commun. Math. Phys., vol. 92, 1983, p.81
  15. Woronowicz, S.L., Rev. Math. Phys., vol. 7, 1995, p.481
  16. Klimyk, A.& Schmüdgen, K., "Quantum Groups and their Representations", 1997
  17. Kashaev, R.M., Algebra i Analys, vol. 8, 1996, p.63
  18. Mack, G., Phys. Lett., vol. 78B, 1978, p.263
  19. Jarvis, P.D.& Rudolph, G., J. Phys. A, vol. 36, 2003, p.5531
  20. P. D. Jarvis, J. Kijowski and G. Rudolph: On the Structure of the Observable Algebra of QCD on the Lattice, hep-th/0412143.
  21. S. Charzyński, J. Kijowski, G. Rudolph and M. Schmidt, On the Classical Configuration Space of Lattice QCD, to appear in J. Geom. Phys.
Zacytuj dokument
-