×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Sensitivity Aspects of Forchheimer's Approximation

Artykuł
Czasopismo : TRANSPORT IN POROUS MEDIA   Tom: 89, Zeszyt: 2, Strony: 155-164
Wojciech Sobieski [1] , Anna Trykozko [2]
2011 angielski
Identyfikatory
-
Cechy publikacji
-
  • Oryginalny artykuł naukowy
  • Zrecenzowana naukowo
Dyscypliny naukowe
-
Mechanika
Słowa kluczowe
-
Abstrakty ( angielski )
-
Forchheimer’s equation, considered to be a nonlinear extension of the linear Darcy’s law, applies to a broader range of velocities for flows through porous media. In this article, we examine sensitivity of the Forchheimer model to permeability κ and a nonlinear coefficient β, using both experimental and computational data for validation. In addition to the direct observations, we were able to identify the role of temperature which influences the model by means of viscosity and density of the fluid. To get a quantifiable answer, we introduce a sensitivity index. Our results reveal a significant impact of the temperature to the model behavior.
Bibliografia
-
  1. Andrade, J.S., Costa, U.M.S., Almeida, M.P.,Makse, H.A., Stanley, H.E.: Inertial effects on fluid flow through disordered porous media. Phys. Rev. Lett. 82(26), 5249–5252 (1999)
  2. ANSYS FLUENT User’s Guide, Release 13.0, November 2010
  3. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)
  4. Belhaj, H.A., Agha, K.R., Nouri, A.M., Butt, S.D., Islam, M.R.: Numerical and experimental modeling of non-Darcy flow in porous media. SPE Latin American and Caribbean Petroleum Engineering Conference, 27–30 April 2003, Port-of-Spain, Trinidad and Tobago, paper number. 81037-MS. doi:10.2118/81037-MS (2003)
  5. Comiti, C., Sabiri, N.E, Montillet, A.: Experimental characterization of flow regimes in varius porous media - III: limit of Darcy’s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids. Chem. Eng. Sci. 55, 3057–3061 (2000)
  6. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1652)
  7. Fourar, M., Lenormand, R.,Karimi-Fard,M., Horne, R.: Inetria effects in high-rate flowthrough heterogeneous porous media. Transp. Porous Media 60(3), 53–370 (2005)
  8. Friedel, T., Voigt, H.-D.: Investigation of non-Darcy flow in tight-gas reservoirs with fractured wells. J. Pet. Sci. Eng. 54, 112–128 (2006)
  9. Garibotti, C.R., Peszy´nska, M.: Upscaling Non-Darcy Flow. Transp. Porous Media 80(3), 401–430 (2009)
  10. Guodong, J., Patzek, T.W., Silin, D.B.: Direct prediction of the Absolute permeability of unconsolidated and consolidated reservoir rock. SPE Annual Technical Conference and Exhibition, 26–29 September 2004, Houston, Texas, paper number: 90084-MS doi:10.2118/90084-MS (2004)
  11. Hassanizadeh, S.M., Gray,W.G.: High velocity flowin porous media. Transp. Porous Media 2, 521–531 (1987)
  12. Huang, H., Ayoub, J.: Applicability of the Forchheimer equation for non-Darcy flow in porous media. SPE J. 13, 112–122 (2008)
  13. Lage, J.L., Antohe, B.V.: Darcy’s experiments and the deviation to nonlinear flow regime. ASME J. Fluids Eng. 122, 619–625 (2000)
  14. Lord, D.L., Rudeen, D.K., Schatz, J.F., Gilkey, A.P., Hansen, C.W.: DRSPALL: spallings model for the waste isolation pilot plant 2004 recertification. SANDIA REPORT SAND2004-0730, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550. February 2006.
  15. Pan, C., Hilpert, M., Miller, C.T.: Pore-scale modeling of saturated permeabilities in random spheres packing. Phys. Rev. E 64, 1–9 (2001)
  16. Peszyńska, M., Trykozko, A.: Convergence and stability in upscaling of flow with inertia from porescale to mesoscale. Int. J. Multiscale Comput. Eng. Accepted December 2009.
  17. Peszyńska M., Trykozko A., Kennedy K.: Sensitivity to parameters in non-Darcy flow model from porescale through mesoscale, Paper #46. In: Proceedings of CMWR XVIII in Barcelona, 21–24 June 2010. (http://congress.cimne.com/CMWR2010/Proceedings)
  18. Peszyńska, M., Trykozko, A., Sobieski, W.: Forchheimer law in computational and experimental studies at porescale and mesoscale GAKUTO International Series. Math. Sci. Appl. 32, 463–482 (2010)
  19. Samsuri, A., Sim, S.H., Tan, C.H.: An Integrated Sand Control Method Evaluation. SPE Asia Pacific Oil and Gas Conference and Exhibition. 9–11. September 2003, Jakarta, Indonesia, paper number: 80444-MS. doi:10.2118/80444-MS
  20. Skjetne, E., Ariault, J.L.: New insights on steady, non-linear flow in porous media. Eur. J. Mech. B Fluids 18(1), 131–145 (1999)
  21. Sobieski, W.: Numerical analysis of sensitivity of Eulerian Multiphase Model for a spouted bed grain dryer. Dry. Technol. 26(12 ), 1438–1456 (2008)
  22. van Battenburg, D., Milton-Tayler, D.: Discussion of SPE 879325, “Beyond Beta factors: a complete model for Darcy, Forchheimer, and Trans-Forchheimer flow in porous media. J. Pet. Technol. 57, 72–74 (2005)
  23. Zeng, Z., Grigg, R.: A criterion for non-Darcy flow in porous media. Transp. Porous Media 63, 57–69 (2006)
Zacytuj dokument
-