Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB


Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Genomic style of proteins: concepts, methods and analyses of ribosomal proteins from 16 microbial species

Czasopismo : FEMS Microbiology Reviews   Tom: 25, Zeszyt: 4, Strony: 425-435
Piotr P. Słonimski , Jan P. Radomski [1]
2001 angielski
Słowa kluczowe
Abstrakty ( angielski )
We have introduced the concept of genomic 'style' of proteins. By style we understand those properties of a large set of proteins which are specific to the genome of one species (species primary-self) and different from the genome of another species (species contrasted-self). To characterise the style, we took advantage of the frequencies of amino acids and dipeptides present in non-identical segments of the complete set of orthologous ribosomal proteins encoded by 16 microbial species. We confirm the dependence of the overall amino acid composition on the genomic (G+C) content, and introduce a rectification procedure making it possible to extricate appropriate species-specific characteristics, which are no longer related to this content. The rectified frequencies are used to calculate inter-species distance matrices, and to build genomic evolutionary trees. Remarkably, the phylograms derived from the frequencies of non-identical residues in proteins closely resemble the classical phylograms based upon the conservation of identical residues in ribosomal RNAs. We believe that the concept of genomic style of proteins can be a useful tool for the study of evolution.
  1. , Needleman S.B., Wunsch C.D., A general method applicable to the search for similarities in the amino acid sequences of two proteins, J. Mol. Biol. 48, 1970, 443 - 445
  2. , Smith T., Waterman M., Identification of common molecular subsequences, J. Mol. Biol. 147, 1981, 195 - 197
  3. , Li, W.H. (1997) Molecular Evolution. Sinauer, Sunderland, MA.
  4. , Altschul S.F., Gish W., Miller W., Myers E., Lipman D., Basic local alignment search tool, J. Mol. Biol. 215, 1990, 403 - 410
  5. , Comet J.P., Aude J.C., Glemet E., Risler J.L., Henaut A., Slonimski P.P., Codani J.J., Significance of Z-value statistics of Smith-Waterman scores for protein alignments, Comp. Chem. 23, 1999, 317 - 331
  6. , Codani J.J., Comet J.P., Aude J.C., Glemet E., Wozniak A., Risler J.L., Henaut A., Slonimski P.P., Automatic analysis of large-scale pairwise alignments of protein sequences, Methods Microbiol. 28, 1999, 229 - 244
  7. , Kimura, M. (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
  8. , Sueoka N., Compositional correlation between deoxyribonucleic acid and protein, Cold Spring Harbor Symp. Quant. Biol. 26, 1961, 35 - 43
  9. , Gu X., Hewett-Emmett D., Li W.H., Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria, Genetica 102–103, 1998, 383 - 391
  10. , Wilquet V., van de Casteele M., The role of the codon first letter in the relationship between genomic (G+C) content and protein amino acid composition, Res. Microbiol. 150, 1999, 21 - 32
  11. , Lobry J.R., Influence of genomic (G+C) content on average amino-acid composition of proteins from 59 bacterial species, Gene 205, 1997, 309 - 316
  12. , Collins D.W., Jukes T.H., Relationship between (G+C) in silent sites of codons and amino acid composition of human proteins, J. Mol. Evol. 36, 1993, 201 - 213
  13. , Nishizawa M., Nishizawa K., Biased usages of arginines and lysines in proteins are correlated with local-scale fluctuations of the (G+C) content of DNA sequences, J. Mol. Evol. 47, 1998, 385 - 393
  14. , Foster P.G., Jermiin L.S., Hickey D.A., Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria, J. Mol. Evol. 44, 1997, 282 - 288
  15. , Sammon J.W., A non-linear mapping for data structure analysis, IEEE Trans. Comp. C-18, 1969, 401 - 409
  16. , Agrafiotis D.K., A new method for analyzing protein sequence relationship based on Sammon maps, Protein Sci. 6, 1997, 287 - 293
  17. , Bertrand P., Diday E., A visual representation of the complexity between an order and dissimilarity index: the pyramids, Comput. Stat. Q. 2, 1995, 31 - 42
  18. , Aude J.C., Diaz-Lazcoz Y., Codani J.J., Risler J.L., Application of the pyramidal clustering method to biological objects, Comp. Chem. 23, 1999, 303 - 315
  19. , Woese C.R., Bacterial evolution, Microbiol. Rev. 51, 1987, 221 - 271
  20. , Aravind L., Tatusov R.I., Wolf Y.I., Walker D.R., Koonin E.V., Evidence for massive gene exchange between archeal and bacterial hyperthermophiles, Trends Genet. 14, 1998, 442 - 444
  21. , Lin J., Gerstein M., Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels, Genome Res. 10, 2000, 808 - 818
Zacytuj dokument