×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Towards Improving Self-adaptive Differential Evolution for Numerical Optimization: A Progress Note

Artykuł
Czasopismo : Procedia Technology   Tom: 6, Zeszyt: Complete, Strony: 49-56
Indrajit Saha [1] , Ujjwal Maulik [1] , Dariusz Plewczyński [2]
2012 angielski
Identyfikatory
-
Cechy publikacji
-
  • Konferencyjna
  • Indeksowana w Web of Science
Słowa kluczowe
-
Dane konferencji
-
  1. 2nd International Conference on Communication, Computing & Security
Abstrakty ( angielski )
-
Differential evolution (DE) is a popular, simple, fast, efficient and stochastic optimization technique which shows a solid performance for diverse continuous optimization problems. However, the control parameters used in DE are fixed. This fact motivated many researchers in past few years to present improved variants of DE. It has been done by (1) modifying the self structure of DE, (2) integrating additional components within the structure of DE. For each category, several algorithms have been reported in the literature. Among of them, in this article, we have been selected four self structural modified adaptive variants of DE, called DE/best/1, DE with random scale factor, DE with time varying scale factor, modified differential evolution, after studying their working principles. Performance comparisons of all these algorithms are provided against the classical DE for ten numerical benchmark functions with the following performance measures: solution quality, number of generations required to find the optimal solution and frequency of finding the optimal solution. From the simulation results, it has been observed that the convergence speed of the recently proposed modified differential evolution is significantly better than others. Also statistical significance test has been carried out to establish the statistical significance of the results.
Bibliografia
-
  1. F. V. D. Bergh & P. A. Engelbrecht. (2001). ‘Effects of swarm size on cooperative particle swarm optimizers’. in Proc. of GECCO-2001 pp. 892-899
  2. S. Das, et al. (2005). ‘Two improved differential evolution schemes for faster global search’. in Proc. ACM-SIGEVO GECCO pp. 991-998
  3. S. Das & P. N. Suganthan. (2011) ‘Differential Evolution: A Survey of the State-of-the-Art’. IEEE Transactions on Evolutionary Computation 15:4-31
  4. R. C. Eberhart & Y. Shi. (1995). ‘Particle swarm optimization’. In Proc. of IEEE Int. Conf. on Neural Networks 4:1942-1948
  5. D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York
  6. R. Horst, et al. (2000). Introduction to Global Optimization. 2nd. Ed. Kluwer Academic
  7. J. Kennedy. (2000) ‘Stereotyping: Improving particle swarm performance with cluster analysis’. in Proc. of IEEE Int. Conf. Evolutionary Computation 2:303-308
  8. S. Kirkpatrik, et al. (1983). ‘Optimization by simulated annealing’. Science 220:671-680
  9. U. Maulik, et al. (2010). ‘Integrating Clustering and Supervised learning for Categorical Data Analysis’. IEEE Transactions on Systems, Man and Cybernetics Part-A 40:664-675
  10. U. Maulik & I. Saha. (2009). ‘Modified Differential Evolution based Fuzzy Clustering for Pixel Classification in Remote Sensing Imagery’. Pattern Recognition 42(9):2135-2149
  11. F. Neri & V. Tirronen. (2010). ‘Recent advances in differential evolution: a survey and experimental analysis’. Artificial Intelligence Review 33:61-106
  12. M. Omran, et al. (2005). ‘Differential Evolution Methods for Unsupervised Image Classification’. In Proc. of IEEE Int. Conference on Evolutionary Computation 2:966-973
  13. K. Price. (1996). ‘Differential Evolution: A Fast and Simple Numerical Optimizer’. NAFIPS96 pp. 524-527
  14. K. Price, (1999). New Ideas in Optimization. McGraw-Hill Publishing Company
  15. K. Price & R. Storn. (1996) ‘Minimizing the Real Functions of the ICEC96 contest by Differential Evolution’. IEEE International Conference on Evolutionary Computation (ICEC96) pp. 842-844
  16. K. Price, et al. (2005). Differential Evolution -A Practical Approach to Global Optimization. Springer, Berlin
  17. H. Ratschek & J. Rokne, (1988). New computer methods for global optimization. Ellis Horwood Series In Mathematics And Applications
  18. I. Saha, et al. (2009) ‘An improved multi-objective technique for fuzzy clustering with application to IRS image segmentation’. Applications of Evolutionary Computing 15:426-431
  19. R. Storn, (1995). ‘Constrained Optimization’. Dr. Dobbs Journal pp. 119-123
  20. R. Storn & K. Price, (1995) ‘Differential Evolution -A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces.’. Technical Report TR-95-012, International Computer Science Institute, Berkley (1995)
  21. R. Storn & K. Price, (1997) ‘Differential Evolution -A Simple and Efficient Heuristic Strategy for Global Optimization over Continuous Spaces’. Journal of Global Optimization 11:341-359
  22. A. Torn & A. Zilinskas, (1989). Global Optimization. Springer, Berlin
  23. Z. B. Zabinsky, (2003). Stochastic adaptive search for global optimization. Springer
  24. A. Zhigljavsky & A. Zilinska, (2008). Stochastic global optimization. Springer
Zacytuj dokument
-