×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Greedy Algorithms for Reduced Basis in Banach Spaces

Artykuł
Czasopismo : CONSTRUCTIVE APPROXIMATION   Tom: 37, Zeszyt: 3, Strony: 455-466
Guergana Petrova [1] , Ronald DeVore [1] , Przemysław Wojtaszczyk [2] , [3]
2013 angielski
Link do publicznie dostępnego pełnego tekstu
Identyfikatory
-
Cechy publikacji
-
  • Oryginalny artykuł naukowy
  • Zrecenzowana naukowo
Dyscypliny naukowe
-
Matematyka
Słowa kluczowe
-
Abstrakty ( angielski )
-
Given a Banach space X and one of its compact sets F, we consider the problem of finding a good n-dimensional space Xn⊂X which can be used to approximate the elements of F. The best possible error we can achieve for such an approximation is given by the Kolmogorov width dn(F)X. However, finding the space which gives this performance is typically numerically intractable. Recently, a new greedy strategy for obtaining good spaces was given in the context of the reduced basis method for solving a parametric family of PDEs. The performance of this greedy algorithm was initially analyzed in Buffa et al. (Modél. Math. Anal. Numér. 46:595–603, 2012) in the case X=H is a Hilbert space. The results of Buffa et al. (Modél. Math. Anal. Numér. 46:595–603, 2012) were significantly improved upon in Binev et al. (SIAM J. Math. Anal. 43:1457–1472, 2011). The purpose of the present paper is to give a new analysis of the performance of such greedy algorithms. Our analysis not only gives improved results for the Hilbert space case but can also be applied to the same greedy procedure in general Banach spaces.
Zacytuj dokument
-