×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Automatic alignment of EEG/MEG and MRI data sets

Artykuł
Czasopismo : CLINICAL NEUROPHYSIOLOGY   Tom: 112, Zeszyt: 8, Strony: 1553-1561
Dorota Kozińska [1] , F Carducci , Krzysztof Nowiński [1]
2001 angielski
Identyfikatory
-
Słowa kluczowe
-
Abstrakty ( angielski )
-
Objectives: We developed a new technique of fully automatic alignment of brain data acquired with scalp sensors (e.g. electroencephalography/evoked potential (EP) electrodes, magnetoencephalography sensors) with a magnetic resonance imaging (MRI) volume of the head. Methods: The method uses geometrical features (two sets of head points: digitized from the subject and extracted from MRI) to guide the alignment. It combines matching on 3 dimensional (3D) geometrical moments that perform the initial alignment, and 3D distance-based alignment that provides the final tuning. To reduce errors of the initial guessed computation resulting from digitization of the head surface points we introduced weights to compute geometrical moments, and a procedure to remove outliers to eliminate incorrectly digitized points. Results: The method was tested on simulated (Monte Carlo trials) and on real data sets. The simulations demonstrated that for the number of test points within the range of 0.1–1% of the total number of head surface points and for the digitization error in the range of −2–2 mm the average map error was between 0.7 and 2.1 mm. The average distance error was less than 1 mm. Tests on real data gave the average distance error between 2.1 and 2.5 mm. Conclusions: The developed technique is fast, robust and comfortable for the patient and for medical personnel. It registers scalp sensor positions with MRI head volume with accuracy that is satisfactory for localization of biological processes examined with a commonly used number of scalp sensors (32, 64, or 128).
Bibliografia
-
  1. Babiloni, F.& Babiloni, C.& Carducci, F.& Fattorini, L.& Anello, C.& Onorati, P.& Urbano, A., "High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject's head model", Electroenceph clin Neurophysiol, vol. 102, 1997, p.69-80
  2. Babiloni, F.& Carducci, F.& Del Gratta, C.& Roberti, G.M.& Cincotti, F.& Bagni, O.& Romani, G.L.& Rossini, P.M.& Babiloni, C., "Multimodal integration of high resolution EEG, MEG and functional magnetic resonance data", Int J Bioelectromagn, vol. 1, 1, 1999
  3. Besl, P.& McKay, N.D., "A method for registration of 3-D shapes", IEEE Trans Pattern Anal Mach Intel, vol. 2, 14, 1992
  4. Borgefors, G., "Hierarchical chamfer matching: a parametric edge matching algorithm", IEEE Trans Pattern Anal Mach Intel, vol. 6, 10, 1988, p.849-865
  5. Dale, A.& Sereno, I., "Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach", J Cogn Neurosci, vol. 2, 5, 1993, p.162-176
  6. Danielsson, P.E., Euclidean distance mapping, computer graphics and image processing, vol. 14, 1980, p.227-248
  7. Fuchs, M.& Wischmann, M.& Wagner, M.& Kohler, H.A.& Theissen, A., "Improving source reconstruction by combining bioelectrical and biomagnetic data", Electroenceph clin Neurophysiol, vol. 107, 2, 1998, p.69-80
  8. Goldstein, H., Classical mechanics, 1950
  9. Hibbard, L.S.& Hawkins, R.A., "Objective alignment for three-dimensional reconstruction of digital autoradiograms", J Neurosci Methods, vol. 26, 1988, p.55-74
  10. Huppertz, H.-J.& Otte, M.& Kristeva-Feige, R.& Grimm, C.& Mergner, T.& Lücking, C.H., "Estimation of the accuracy of a surface matching technique for registration of EEG and MRI data", Electroenceph clin Neurophysiol, vol. 106, 1998, p.409-415
  11. Ives, J.R.& Warach, S.& Schmitt, F.& Edelmann, R.R.& Schomer, D.L., "Monitoring the patient's EEG during echoplanar MRI", Electroenceph clin Neurophysiol, vol. 87, 1993, p.417-420
  12. Jiang, H.& Robb, R.A.& Holton, K.S., "A new approach to 3-D registration of multimodality medical images by surface matching", Visual Biomed Comput SPIE, vol. 1808, 1992, p.334-341
  13. Kober, H.& Grummisch, P.& Vieth, J., "Precise fusion of MEG and MRI tomography using a surface fit", Biomed Eng (Berlin), vol. 38, Suppl, 1993, p.355-356
  14. Koshla, D.& Donn, M.& Kwong, B., "Spatial mislocation of EEG electrodes – effects on accuracy of dipole estimation", Clin Neurophysiol, vol. 110, 1999, p.261-271
  15. Kozinska, D.& Tretiak, O.& Nissanov, J.& Ozturk, C., "Multidimensional alignment using the Euclidean distance transform", Graph Model Im Proc, vol. 59, 6, 1997, p.373-387
  16. Kozinska, D.& Tarnecki, R.& Nowinski, K., "Presentation of brain electrical activity distribution on its cortex surface derived from MR images", Technol Health Care, vol. 6, 1998, p.209-224
  17. Levin, D.N.& Pelizzari, C.A.& Chen, G.T.Y.& Chen, C.T.& Cooper, M.D., "Retrospective geometric correlation of MR, CT, and PET images", Radiology, vol. 169, 1988, p.817-823
  18. Marquardt, D.W., "An algorithm for least squares estimation of nonlinear parameters", J Soc Ind Appl Math, vol. 11, 2, 1963, p.431-441
  19. Pellizari, C.A.& Chen, G.T.Y.& Spelbring, D.R.& Weichselbaum, R.R.& Chen, C.T., "Accurate three-dimensional registration of CT, PET, and/or MR images of the brain", J Comp Assist Tomogr, vol. 13, 1, 1989, p.20-26
  20. Press, W.& Teukolsky, S.& Vetterling, W.& Flannery, B., Numerical recipes in C. The art of scientific computing, 1992
  21. Rubinowicz, W.& Krolikowski, W., Theoretical mechanics (in Polish), 1967
  22. Simpson, G.V.& Pflieger, M.E.& Foxe, J.J.& Ahlfors, S.P.& Vaughan Jr, H.G.& Hrabe, J.& Ilmoniemi, R.J.& Lantos, G., "Dynamic neuroimaging of brain function", J Clin Neurophysiol, vol. 12, 1995, p.406-429
  23. Singh, K.& Holiday, I.& Furlong, P. et al., "Evaluation of MRI-EEG/MEG coregistration strategies using Monte Carlo simulation", Electroenceph clin Neurophysiol, vol. 102, 1997, p.81-85
  24. Towle, V.L.& Bolanos, J.& Suarez, D.& Tan, K.& Grzeszczuk, R.& Levin, D.N.& Cakmur, R.& Frank, S.& Spire, J.-P., "The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy", Electroenceph clin Neurophysiol, vol. 86, 1993, p.1-6
  25. van den Elsen, P.A.& Pol, E.J.D.& Viergever, M.A., "Medical image matching – a review with classification", IEEE Eng Med Biol, vol. 3, 1993, p.26-39
  26. Wang, B.& Toro, C.& Zeffiro, T.& Hallet, M., "Head surface digitization and registration: a method for mapping positions on the head onto magnetic resonance images", Brain Topogr, vol. 6, 1994, p.185-192
  27. Yoo, S.S.& Guttmann, C.R.G.& Ives, J.R.& Panych, L.P.& Kikinis, R.& Schomer, D.L.& Jolesz, F.A., "3D localization of surface 10-20 EEG electrodes on high resolution anatomical MR images", Electroenceph clin Neurophysiol, vol. 102, 1997, p.335-339
Zacytuj dokument
-