×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Knotting pathways in proteins

Artykuł
Czasopismo : BIOCHEMICAL SOCIETY TRANSACTIONS   Tom: 41, Zeszyt: 2, Strony: 523-527
Joanna Sułkowska [1] , [2] , Jeffrey Noel [3] , César Ramírez‑Sarmiento [4] , Eric Rawdon [5] , Kenneth Millett [6] , José Onuchic [3]
  • [1]
  • [2]
    Center for Theoretical Biological Physics, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92037, U.S.A
  • [3]
    Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005, U.S.A.
  • [4]
    Departamento de Biolog ́ıa, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 6553, Santiago, Chile
  • [5]
    Department of Mathematics, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, U.S.A.
  • [6]
    Department of Mathematics, University of California Santa Barbara, 552 University Road, Santa Barbara, CA 93106, U.S.A.
2013 angielski
Link do publicznie dostępnego pełnego tekstu
Identyfikatory
-
Cechy publikacji
-
  • Oryginalny artykuł naukowy
  • Zrecenzowana naukowo
Dyscypliny naukowe
-
Biofizyka – dziedzina nauk fizycznych
Abstrakty ( angielski )
-
Most proteins, in order to perform their biological function, have to fold to a compact native state. The increasing number of knotted and slipknotted proteins identified suggests that proteins are able to manoeuvre around topological barriers during folding. In the present article, we review the current progress in elucidating the knotting process in proteins. Although we concentrate on theoretical approaches, where a knotted topology can be unambiguously detected, comparison with experiments is also reviewed. Numerical simulations suggest that the folding process for small knotted proteins is composed of twisted loop formation and then threading by either slipknot geometries or flipping. As the size of the knotted proteins increases, particularly for more deeply threaded termini, the prevalence of traps in the free energy landscape also increases. Thus, in the case of longer knotted and slipknotted proteins, the folding mechanism is probably supported by chaperones. Overall, results imply that knotted proteins can be folded efficiently and survive evolutionary pressure in order to perform their biological functions.
Zacytuj dokument
-