×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Mechanical properties and numerical approach to fibre reinforced concrete slabs

Rozdział
Książka: Brittle Matrix Composites-11   Strony: 309-318
Krzysztof Cichocki [1] , Jacek Domski [1] , Jacek Katzer [1] , Mariusz Ruchwa [1]
2015 angielski
Liczba arkuszy: 0,9
Cechy publikacji
-
  • Rozdział w książce
  • Zrecenzowana naukowo
  • Konferencyjna
  • Indeksowana w Web of Science
Dyscypliny naukowe
-
Budownictwo
Słowa kluczowe
-
Dane konferencji
-
  1. BMC-11 11th International Symposium on Brittle Matrix Composites
  2. 2015-09-28 - 2015-09-30
  3. Warszawa, Polska
Bibliografia
-
  1. Malhorta, V.M., Mehta, P.K., High-Performance High-Volume Fly Ash Concrete. SCMSD Inc., second revised edition. Ottawa 2005
  2. Neville, A.M., Properties of Concrete. Longman, 4th Edition, Addison Wesley Longman, Harlow, Essex 1995
  3. Katzer, J., Kobaka, J., The assessment of fine aggregate pit deposits for concrete production. Kuwait Journal of Science and Engineering. 33, 2006, 165-174
  4. Domski, J., Katzer, J., Fajto, D., Load-CMOD Characteristics of Fibre Reinforced Cementitious Composites Based on Waste Ceramic Aggregate. Annual Set - The Environment Protection, 14, 2012, 69-80
  5. Hendriks, C.F., Janssen, G.M.T., Use of recycled materials in construction. Materials and Structures. 36, 2003, 604–608
  6. de Brito, J., Pereira, A.S., Correia, J.R., Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cement and Concrete Composites. 27 (4), 2005, 429–433
  7. Ponikiewski, T., Cygan, G., Some properties of self compacting concretes reinforced with steel fibres, Cement Wapno Beton. 4, 2011, 203-209
  8. Ponikiewski, T., Cygan, G., Kmita, T., Evaluation of homogenous distribution of steel fibres in the fine grained self compacting concrete with help of L-box test, Cement Wapno Beton. 1, 2011, 3-9
  9. Ponikiewski, T., Gołaszewski, J., The self – compacting properties of concrete mixture of cement with calcareous fly ash addition. Cement Wapno Beton. 4, 2012, 233-242
  10. Domski, J., Cracking moment in steel fibre reinforced concrete beams based on waste sand. “OVIDIUS” University Annals – Constantza, Series Civil Engineering, 13, 2011, 29-34
  11. Katzer, J., Properties of Precast SFRCC Beams Under Harmonic Load. Science and Engineering of Composite Materials. 15, 2008, 107-120
  12. Johnston, C.D., Fibre reinforced cements and concretes. Gordon and Breach Science Publishers, Amsterdam 2001
  13. Maidl, B.R., Steel fibre reinforced concrete. Ernst & Sohn. Berlin 1995
  14. Correia, J.R., de Brito, J., Pereira, A.S., Effects on concrete durability of using recycled ceramic aggregates. Materials and Structures. 39, 2006, 169–177
  15. Domski, J., Katzer, J., Load-deflection Characteristic of Fibre Concrete Based on Waste Ceramic Aggregate. Annual Set - The Environment Protection, 15, 2013, 69-80
  16. Bentur, A., Igarashi, S., Kovler, K., Prevention of autogenous shrinkage in high strength concrete by internal curing using wet lightweight aggregates. Cement and Concrete Research 31 (11), 2001, 1587–1591
  17. Collins, F., Sanjayan, J.G., Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cement and Concrete Research. 29 (4), 1999, 607–610
  18. Kohno, K., et al., Effects of artificial lightweight aggregate on autogenous shrinkage of concrete. Cement and Concrete Research. 29 (2), 1999, 611–614
  19. Kovler, K., Jensen, O.M., Novel techniques for concrete curing. Concrete International. 27 (9), 2005, 39–42
  20. Suzuki, M., Meddah, M.S., Sato, R., Use of porous ceramic waste aggregates for internal curing of high-performance concrete. Cement and Concrete Research. 39, 2009, 373–381
  21. Weber, S., Reinhardt, H.W., A new generation of high performance concrete: concrete with autogenous curing. Advanced Cement Based Material. 6 (2), 1997, 59–68
  22. Zhutovsky, S., Kovler, K., Bentur, A., Influence of wet lightweight aggregate on mechanical properties of concrete at early ages. Materials Structure. 35, 2002, 97–101
  23. Zhutovsky, S., Kovler, K., Bentur, A., Influence of cement paste matrix properties on the autogenous curing of high-performance concrete. Cement & Concrete Composites. 26 (5), 2004, 499–507
  24. Katzer, J., Domski, J., Quality and mechanical properties of engineered steel fibre used as reinforcement for concrete, Construction and Building Materials, 36, 2012, 243-248
  25. Naaman, A.E., Engineered Steel Fibres with Optimal Properties for Reinforcement of Cement Composites. Journal of Advanced Concrete Technology, 1 (3), 2003, 241-252
  26. di Prisco, M., Plizzari, G., Vandewalle, L., Fibre reinforced concrete: new design perspectives. Materials and Structures. 42, 2009, 1261-1281
  27. Belytschko, T., Liu, W.K., Moran, B., Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, 2000
  28. Dassault Systemes SIMULIA, ABAQUS Analysis User’s Manual. Providence, 2013
  29. Ponikiewski, T., Katzer, J., Bugdol, M., Rudzki, M., Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Materials and Structures, 10, 2014, 1-12
  30. Cichocki, K., Domski, J., Katzer, J., Ruchwa, M., Impact resistant concrete elements with nonconventional reinforcement. Rocznik Ochrona Srodowiska - Annual Set The Environment Protection, Monograph No. 1, 16, Part 2, 2014, 1-99
Zacytuj dokument
-