×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Gravitational Energy: a quasi-local, Hamiltonian approach

Rozdział
Książka: Road to Reality with Roger Penrose   Rozdział: 3, Strony: 51-74
2015 angielski
Liczba arkuszy: 1,5
Link do publicznie dostępnego pełnego tekstu
Cechy publikacji
-
  • Rozdział w książce
  • Zrecenzowana naukowo
Dyscypliny naukowe
-
Fizyka
Abstrakty ( angielski )
-
Hamiltonian evolution of gravitational field within a spatially compact world tube with non-vanishing boundary is discussed. A universal Hamiltonian identity is proved which relates gravitational Cauchy data (internal and external 3-geometry of a Cauchy surface) with boundary data (internal and external 3-geometry of the tube). It is shown how different ways to control the boundary data lead to different quasi-local definitions of gravitational energy (mass).
Bibliografia
-
  1. [1] I. Bia lynicki-Birula, Z. Bia lynicka-Birula, Quantum Electrodynamics, Pergamon Press (1975) N. N. Bogoliubov, D. V. Shirkov, Introduction into Theory of Quantum Fields (Science, Moscow, 1976).
  2. [2] L. D. Landau, E. M. Lifshitz, The classical theory of fields, Pergamon Press (1951)
  3. [3] R.Penrose, Quasi-local mass and angular momentum in general relativity, Proc. R. Soc. Lond. A381 (1982) p. 53-63 Mass and Angular Momentum at the Quasi-Local Level, in: ”Asymptotic Behaviour of Mass and Spacetime Geometry”, Springer Lecture Notes in Physics, vol.202, 23 (1983)
  4. [4] K. Grabowska, J. Kijowski, Canonical Gravity and Gravitational Energy, in Differential Geometry and its Applications, Ed.: O. Kowalski, D. Krupka, J. Slovak; Opava, (2003) p. 261 – 274.
  5. [5] W. M. Tulczyjew, Hamiltonian systems, Lagrangian systems, and the Legendre transformation, Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), pp. 247-258. Academic Press, London, (1974).
  6. [6] W. M. Tulczyjew, Geometric Formulation of Physical Theories, Bibliopolis, 1989.
  7. [7] A. Ashtekar, Lectures on non-perturbative canonical gravity, World Scientific, 1991
  8. [8] J. D. Brown, J. W. York, Phys. Rev D 47 (1993), p. 1403 – 1419; J. D. Brown, S. R. Lau and J. W. York, Action and Energy of the Gravitational Field, (2000) gr-qc/0010024.
  9. [9] P. Chru´sciel, J. Jezierski and J. Kijowski, Hamiltonian Field Theory in the Radiating Regime, Springer Lecture Notes in Physics, Monographs (2001).
  10. [10] S. W. Hawking and G. T. Horowitz, The gravitational Hamiltonian, action, entropy and surface terms, Class. Quantum Grav. 13 (1996) p. 1487-1498; S. W. Hawking and C. J. Hunter, The gravitational Hamiltonian in the presence of non-orthogonal boundaries, Class. Quantum Grav. 13 (1996) p. 2735-2752.
  11. [11] R. Arnowitt, S. Deser, C. Misner, The dynamics of general relativity, in: Gravitation: an introduction to current research, ed. L. Witten, p. 227 (Wiley, New York, 1962)
  12. [12] C. Misner, K.S. Thorne, J. A. Wheeler Gravitation, W.H. Freeman and Co., San Francisco (1973)
  13. [13] C. M. Liu and S. T.Yau, Positivity of Quasilocal Mass, Phys. Rev. Lett. 90 (2003) 231102; N. O. Murchadha, L. Szabados and Tod: Coment on “Positivity of Quasilocal Mass”, Phys. Rev. Letters, 92 (2004) p. 259001-1; N. O. Murchadha, R. S. Tung, N. Xie, E. Malec E, Brown-york mass and the Thorne hoop conjecture, Phys. Rev. Lett. 104 (2010) 0411016.
  14. [14] L. Szabados, Quasi-local Energy-momentum and Angular Momentum in GR, Living Rev. Relativity 7 (2004), 4.
  15. [15] P.T.Chrusciel, Recent results in mathematical gravity, Proceedings of GRG17, Dublin (gr-qc/ 0411008).
  16. [16] J. Jezierski and J. Kijowski, The localization of energy in gauge field theories and in linear gravitation, GRG Journal 22 (1990) p. 1283-1307; Quasi-local hamiltonian of the gravitational field, in Proceedings of the Sixth Marcel Grossmann Meeting on General Relativity, Kyoto 1991, Part A, editors H. Sato and T. Nakamura, World Scientific (1992), p. 123-125
  17. [17] J. Kijowski, Asymptotic Degrees of Freedom and Gravitational Energy, in: Proceedings of Journ´ees Relativistes 1983, Torino, ed. S. Benenti et al., p. (Pitagora Editrice Bologna, 1985), p. 205; Unconstrained degrees of freedom of gravitational field and the positivity of gravitational energy, in: Gravitation, Geometry and Relativistic Physics, Springer Lecture Notes in Physics, vol. 212 (1984), p. 40;
  18. [18] J. Kijowski, A simple Derivation of Canonical Structure and quasilocal Hamiltonians in General Relativity, Gen. Relativ. Gravit. 29, 307 (1997).
  19. [19] J. Kijowski, On positivity of gravitational energy, in: Proceedings of the IV Marcel Grossmann Meeting, Rome (1985), ed. R. Ruffini; J. Jezierski and J. Kijowski, Positivity of total energy in general relativity, Phys. Rev. D. 36 (1987) p. 1041 – 1044.
  20. [20] J. Kijowski, On a new variational principle in general relativity and the energy of gravitational field, GRG Journal 9 (1978), p. 857-881; J. Kijowski and R. Werpachowski, Universality of affine formulation in General Relativity, Rep. Math. Phys. 59 (2007) p. 1 – 31.
  21. [21] J. Kijowski, W. M. Tulczyjew, A symplectic framework for field theories, Springer Lecture Notes in Physics, vol. 107 (1979), 257 pages;
Zacytuj dokument
-