×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Asymptotic properties of entanglement polytopes for large number of qubits

Artykuł
Tomasz Maciążek [1] , Adam Sawicki [1]
2018-01-03 angielski
Liczba arkuszy: 5
Link do publicznie dostępnego pełnego tekstu
Identyfikatory
-
Cechy publikacji
-
  • Oryginalny artykuł naukowy
  • Zrecenzowana naukowo
Tłumaczenie tytułu
-
Asymptotyczne własności wielościanów splątania dla dużej liczby kubitów
Dyscypliny naukowe
-
Fizyka , Matematyka
Słowa kluczowe
-
Abstrakty ( angielski )
-
Entanglement polytopes have been recently proposed as a way of witnessing the SLOCC multipartite entanglement classes using single particle information. We present first asymptotic results concerning feasibility of this approach for large number of qubits. In particular, we show that entanglement polytopes of $L$-qubit system accumulate in the distance $O(\frac{1}{\sqrt{L}})$ from the point corresponding to the maximally mixed reduced one-qubit density matrices. This implies existence of a possibly large region where many entanglement polytopes overlap, i.e where the witnessing power of entanglement polytopes is weak. Moreover, we argue that the witnessing power cannot be strengthened by any entanglement distillation protocol, as for large $L$ the required purity is above current capability.
Bibliografia
-
  1. [1] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K., Quantum entanglement Rev. Mod. Phys. Vol. 81, No. 2, pp. 865-942, 2009
  2. [2] M. A. Nielsen, Phys. Rev. Lett. 83, 436 - 439, (1999).
  3. [3] J. I. de Vicente, C. Spee, and B. Kraus Phys. Rev. Lett.111, 110502 (2013)
  4. [4] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62,062314 (2000).
  5. [5] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A 65, 052112 (2002).
  6. [6] P. Lévay, and P. Vrana, Phys. Rev. A 78, 022329, (2008).
  7. [7] J. Schliemann, J. I. Cirac, M. Kuś, M. Lewenstein, D.Loss, Phys. Rev. A 64, 022303, (2001).
  8. [8] F. Holweck, P. Lévay, J. Phys A: Math and Theo 49 (8),085201, (2016).
  9. [9] G. Gour, N. R. Wallach, J. Math. Phys. 51, 112201,(2010).
  10. [10] O. Chterental and D. Z ̆. Doković, Normal forms and tensor ranks of pure states of four qubits, in Linear Algebra Research Advances (Nova Science Publishers, Inc.) pp. 133-167, (2007)
  11. [11] N. R. Wallach, Quantum computing and entanglement for mathematicians. Representation theory and com- plex analysis, 345-376, Lecture Notes in Math., 1931, Springer, Berlin, (2008)
  12. [12] J. Turner and J. Marton, SIGMA 13, 028, (2017)
  13. [13] F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, Vol. 31,Princeton Univ. Press, Princeton, 1984
  14. [14] L. Ness, Amer. J. Math. 106(6), 1281-1329, 1984
  15. [15] T. Maciążek, A. Sawicki, J. Phys. A: Math. Theor. 48045305, DOI: 10.1088/1751-8113/48/4/045305, (2015)
  16. [16] M. Brion, in Séminaire d’Algébre P. Dubreil et M.-P.Malliavin, Springer, p. 177,1987
  17. [17] A. Klyachko, J. Phys.: Conf. Ser. 36, 72 (2006).
  18. [18] A. Klyachko, arXiv:quant-ph/0206012 (2002).
  19. [19] A. K. Gupta, D. K. Nagar, Matrix Variate Distributions,
  20. Champman and Hall/CRC, Boca Raton, 2000
  21. [20] M. Walter et. al., Science 340 (6137), 1205-1208, 2013 [21] A. Sawicki, M. Oszmaniec, M. Kuś, Rev. Math. Phys. 26,
  22. 1450004, 2014
  23. [22] A. Sawicki, A, Huckleberry, M Kuś, Commun. Math.
  24. Phys. 305 (2), 441-468, 2011
  25. [23] A. Sawicki et. al., arXiv:1701.03536, 2017
  26. [24] A. Sawicki, M. Kuś, J. Phys. A: Math. Theor. 44 495301, 2011
  27. 2011
  28. [25] A. Sawicki, M. Walter, M. Kuś, J. Phys. A 46, 055304,
  29. 2013
  30. [26] M. Oszmaniec, P. Suwara, A. Sawicki, J. Math. Phys. 55,
  31. 062204, 2014
  32. [27] A. Sawicki, V. V. Tsanov, J. Phys. A: Math. Theor. 46
  33. 265301, 2013
  34. [28] A. Huckleberry, M. Kuś, A. Sawicki, J. Math. Phys. 54,
  35. 022202, 2013
  36. [29] M. Christandl, B. Doran, S. Kousidis, M. Walter, Com-
  37. mun. Math. Phys. 332, 1-52 (2014)
  38. [30] T. Maciążek, M. Oszmaniec, A. Sawicki, J. Math. Phys.
  39. 54, 092201 (2013)
  40. [31] A. Higuchi, A. Sudbery, J. Szulc, Phys. Rev. Lett. 90,
  41. 107902, (2003)
  42. [32] E. Briand, J.-G. Luque, and J.-Y. Thibon, J. Phys. A 38,
  43. 9915 (2003).
  44. [33] F. C. Kirwan, Invent. Math. 77, 547552. (1984)
  45. [34] A. Sawicki, M. Oszmaniec, M Kuś, Physical Review A
  46. 86 (4), 040304, (2012)
  47. [35] G. H. Golub, C. F. Van Loan, Matrix Computations (3rd
  48. ed.), Baltimore: Johns Hopkins, ISBN 978-0-8018-5414-
  49. 9. (1996)
  50. [36] G. H. Aguilar, S. P. Walborn, P. H. Ribeiro, L. C. Céleri,
  51. Phys. Rev. X 5, 031042 (2015)
  52. [37] Yuan-Yuan Z., M. Grassl, Bei Z., Guo-Yong X., Chao Z.,
  53. Chuan-Feng Li, Guang-Can G., npj Quantum Informa- tion 3, Article number: 11, doi:10.1038/s41534-017-0007- 5. (2017)
  54. [38] T. Maciążek, V. Tsanov, Quantum marginals from pure doubly excited states, J. Phys. A: Math. Theor. 50 465304 (2017)
  55. [39] Tennie, F. and Ebler, D. and Vedral, V. and Schilling,
  56. C., Pinning of fermionic occupation numbers: General concepts and one spatial dimension, Phys. Rev. A, 93(4), 042126, 2016
  57. [40] Tennie, F. and Vedral, V. and Schilling, C., Pinning of fermionic occupation numbers: Higher spatial dimensions and spin, Phys. Rev. A, 94(1), 012120, 2016
  58. [41] Tennie, F. and Vedral, V. and Schilling, C., Influence of the fermionic exchange symmetry beyond Pauli’s exclu- sion principle, Phys. Rev. A, 95(2), 022336, 2017
  59. [42] Schilling, C., Natural orbitals and occupation numbers for harmonium: Fermions versus bosons, Phys. Rev. A, vol.
  60. 88, no 4, pp 042105, 2013
  61. [43] Schilling, C., Hubbard model: Pinning of occupation num-
  62. bers and role of symmetries, Phys. Rev. B 92, 155149,
  63. 2015
  64. [44] Benavides-Riveros, Carlos L. and Springborg, Michael,
  65. Quasipinning and selection rules for excitations in atoms
  66. and molecules, Phys. Rev. A 92, 012512, 2015
  67. [45] Schilling, C., Quasipinning and its relevance for N- fermion quantum states, Phys. Rev. A 91, 022105 (2015) [46] Legeza, ́’O., Schilling, C., Role of the pair poten- tial for the saturation of generalized Pauli constraints,
  68. arXiv:1711.09099 (2017)
Zacytuj dokument
-