×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

Bats, Bat-Borne Viruses, and Environmental Changes

Rozdział
Książka: Bats   Rozdział: 8, Strony: 113-132
Aneta Afelt [1] , Christian Devaux [2] , Jordi Serra-Cobo [3] , Roger Frutos [4] , [5]
  • [1]
  • [2]
    Aix Marseille University, CNRS, IRD, INSERM, AP-HM, URMITE, IHU-Méditerranée Infection, Marseille, France
  • [3]
    IRBIO and Department of Animal Biology, Faculty of Biology, University of Barcelona, Spain
  • [4]
    IES, University of Montpellier, CNRS, Montpellier, France
  • [5]
    CIRAD, UMR 17, Intertryp, Montpellier, France
2018-07-04 angielski
Link do publicznie dostępnego pełnego tekstu
Identyfikatory
-
Cechy publikacji
-
  • Rozdział w książce
  • Zrecenzowana naukowo
Tłumaczenie tytułu
-
Nietoperze, wirusy i zmiany środowiska.
Dyscypliny naukowe
-
Biologia , Biologia medyczna , Ekologia , Geografia , Nauki o zdrowiu , Ochrona środowiska – dziedzina nauk biologicznych
Słowa kluczowe
-
Abstrakty ( angielski )
-
During the past decade, bats were shown to a major source for new viruses. Among them are well known coronaviruses such as SRAS or MERS but also Ebola. At the same time, no direct infection from bat to human has been demonstrated. The dynamic of transmission of bat-borne viruses is therefore a complex process involving both sylvatic and urban cycles, and intermediate hosts not always identified. The threat potentially exists, and drivers must be sought for man-made environmental changes. Anthropized environments are mosaic landscapes attracting at the same place different bat species usually not found together. Anthropized landscape is also characterized by a higher density of bat-borne viruses. The threat of new bat-borne virus outbreaks has greatly increased in the recent years along with media anthropization and the extremely rapid deforestation process. Deforestation could be a major contributing factor to new viral emergences due to more frequent contacts of livestock and humans with bats possibly containing infectious viruses.
Bibliografia
-
  1. [1] Schipper J, Chanson JS, Chiozza F, et al. The status of the world's land and marine mammals:
  2. Diversity, threat and knowledge. Science. 2008;322:225-230
  3. [2] O’Shea TJ, Cryan PM, Andrew A, Cunningham AA, Fooks AR, Hayman DTS, Luis AD,
  4. Peel AJ, Plowright RK, Wood JLN. Bat flight and zoonotic viruses. Emerging Infectious
  5. Diseases. 2014;20:741-745
  6. [3] Shi Z. Bat and virus. Protein & Cell 2010;1:109-114
  7. [4] Mühldorfer M, Speck S, Kurth A, Lesnik R, Freuling C, Müller T, Kramer-Schadt S,
  8. Wibbelt G. Diseases and causes of death in European bats: Dynamics in disease susceptibility
  9. and infection rates. PLoS One. 2011;6:e29773
  10. [5] Sulkin SE, Allen R. Virus infection in bats. In: Melnick JL, Houston S, editors. Monographs
  11. in Virology. Basel: Karger AG; 1974
  12. [6] Badrane H, Tordo N. Host swithching in Lyssavirus history from the Chiroptera to the
  13. Carnivora orders. Journal of Virology. 2001;75:8096-8104
  14. [7] Halpin K, Young PL, Field HE, Mackenzie JS.Isolation of Hendra virus from pteropid bats:
  15. A natural reservoir of Hendra virus. The Journal of General Virology. 2000;81:1927-1932
  16. [8] Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, Chan YP, Lim ME, Lam
  17. SK. Isolation of Nipah virus from Malaysian island flying foxes. Microbes and Infection.
  18. 2002;4:145-151
  19. [9] Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Delicat A, Paweska
  20. JT, Gonzalez JP, Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature. 2005;
  21. 438:575-576
  22. [10] Towner JS, Amman BR, Sealy TA, Reeder Carroll SA, Comer JA, Kemp A, Swanepoel R,
  23. Paddock CD, Balinandi S, Khristova ML, Formenty PBH, Albarino CG, Miller DM, Reed
  24. ZD, Kayiwa JT, Mills JN, Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P,
  25. Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol
  26. ST, Rollin PE. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.
  27. PLoS Pathogens. 2009;5:e1000536
  28. [11] Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng
  29. C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P,
  30. Shi ZL. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2
  31. receptor. Nature. 2013;503:535-538
  32. [12] Cui J, Tachedjian G, Wang LF. Bats and rodents shape mammalian retroviral phylogeny.
  33. Nature Scientific Reports. 2015;5:16561. DOI: 10.1038/srep16561
  34. [13] Chothe SK, Bhushan G, Nissly RH, Yeh YT, Brown J, Turner G, Fisher J, Sewall BJ,
  35. Reeder AM, Terrones M, Jayarao BM, Kuchipudi SV. Avian and human influenza virus
  36. Bats, Bat-Borne Viruses, and Environmental Changes
  37. http://dx.doi.org/10.5772/intechopen.74377
  38. compatible sialic acid receptors in little brown bats. Nature Scientific Reports. 2016;7:
  39. 660. DOI: 10.1038/s41598-017-00793-6
  40. [14] Li LL, Victoria JG, Wang C, Jones M, Fellers GM, Kunz TH, Delwart E. Bat guano virome:
  41. Predominance of dietary viruses from insects and plants plus novel mammalian viruses.
  42. Journal of Virology. 2010;84:6955-6965
  43. [15] Wu Z, Ren X, Yang L, Hu Y, Yang J, He G, Zhang J, Dong J, Sun L, Du J, Liu L, Xue Y,
  44. Wang J, Yanga F, Zhang S, Jin Q. Virome analysis for identification of novel mammalian
  45. viruses in bat species from Chinese provinces. Journal of Virology. 2012;86:10999-11012
  46. [16] Tse H, Tsang AKL, Tsoi HW, Leung ASP, Ho CC, Lau SKP, Woo PCY, Yuen KY.
  47. Identification of a novel bat papillomavirus by metagenomics. PLoS One. 2012;7:e43986
  48. [17] Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, Ellison
  49. JA, Gilbert AT, Kuzmin IV, Niezgoda M, Osinubi MOV, Recuenco S, Markotter W,
  50. Breiman RF, Kalemba L, Malekani J, Lindblade KA, Rostal MK, Ojeda-Flores R, Suzan
  51. G, Davis LB, Blau DM, Ogunkoya AB, Alvarez Castillo DA, Moran D, Ngam S, Akaibe D,
  52. Agwanda B, Briese T, Epstein JH, Daszak P, Rupprecht CE, Holmes EC, Lipkin WI. Bats
  53. are a major natural reservoir for hepaciviruses and pegiviruses. Proceedings of the
  54. National Academy of Sciences of the United States of America. 2013;110:8194-8199
  55. [18] Chen L, Liu B, Yang J, Jin Q. DBatVir: The database of bat-associated viruses. Database.
  56. 2014;2014. Article ID: Bau021. DOI: 10.1093/database/bau021
  57. [19] Calisher C, Childs JE, Field HE, Holmes KV, Schountz T. Bats: Important reservoir host
  58. of emerging viruses. Clinical Microbiology Reviews. 2006;19:531-545
  59. [20] Hanna JN, Carney IK, Smith GA, Deverill JE, Botha JA, Serafin IL, Harrower BJ,
  60. Fitzpatrick PF, Searle JW. Australian bat lyssavirus infection: A second human case with
  61. a long incubation period. The Medical Journal of Australia. 2000;172:597-599
  62. [21] Nathwani D, Mc Intyre PG, White K, Shearer AJ, Reynolds N, Walker D, Orange GV,
  63. Fooks AR. Fatal human rabies caused by European bat lyssavirus type 2a infection in
  64. Scotland. Clinical Infectious Diseases. 2003;37:598-601
  65. [22] Paweska JT, Blumberg LH, Liebenberg C, Hewlett RH, Grobbelaar AA, Leman PA, Croft
  66. JE, Nel LH, Nutt L, Swanepoel R. Fatal human infection with rabies-related Duvenhage
  67. virus, South Africa. Emerging Infectious Diseases. 2006;12:1965-1967
  68. [23] Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley L,
  69. Linda S, Rodwell B, Ketterer P. A morbillivirus that caused fatal disease in horses and
  70. humans. Science. 1995;268:94-97
  71. [24] Chua KB. Nipah virus outbreak in Malaysia. Journal of Clinical Virology. 2003;26:265-275
  72. [25] Sazzad HMS, Hossain MJ, Gurley ES, Ameen KMH, Parveen S, Islam MS, Faruque LI,
  73. Podder G, Banu SS, Lo MK, Rollin PE, Rota PA, Daszak P, Rahman M, Luby SP. Nipah
  74. virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh.
  75. Emerging Infectious Diseases. 2013;19:210-217
  76. [26] Arankalle VA, Bandyopadhyay BT, Ramdasi AY, Jadi R, Patil DR, Rahman M, Majumdar
  77. M, Banerjee PS, Hati AK, Goswami RP, Neogi DK, Mishra AC. Genomic characterization
  78. of Nipah virus. West Bengal, India. Emerging Infectious Diseases. 2011;17:907-909
  79. [27] Islam MS, Sazzad HMS, Satter SM, Sultana S, Hossain MJ, Hasan M, Rahman M, Campbell
  80. S, Cannon DL, Ströher U, Daszak P, Luby SP, Gurley ES. Nipah virus transmission from
  81. bats to humans associated with drinking traditional liquor made from date palm sap,
  82. Bangladesh, 2011-2014. Emerging Infectious Diseases. 2016;22:664-670
  83. [28] Philbey AW, Kirkland PD, Ross AD, Davis RJ, Gleeson AB, Love RJ, Daniels PW, Gould
  84. AR, Hyatt AD. An apparently new virus (family Paramyxoviridae) infectious for pigs,
  85. humans and fruit bats. Emerging Infectious Diseases. 1998;4:269-271
  86. [29] Chant K, Chan R, Smith M, Dwyer DE, Kirkland P. Probable human infection with a
  87. newly described virus in the family Paramyxoviridae. Emerging Infectious Diseases.
  88. 1998;4:273-275
  89. [30] Marra MA, Jones SJ, Astell CR, et al. The genome sequence of the SARS-associated coronavirus.
  90. Science. 2003;300:1399-1404
  91. [31] Song HD, Tu CC, Zhang GW, et al. Cross-host evolution of severe acute respiratory syndrome
  92. coronavirus in palm civet and human. Proceedings of the National Academy of
  93. Sciences of the United States of America. 2005;102:2430-2435
  94. [32] Mc Donald LC. SARS in healthcare facilities, Toronto and Taiwan. Emerging Infectious
  95. Diseases. 2004;10:777-781
  96. [33] Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation
  97. of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England
  98. Journal of Medicine. 2012;367:1814-1820
  99. [34] Wang Q, Qi J, Yuan Y, et al. Bat origins of MERS-CoV supported by bat coronavirus
  100. HKU4 usage of human receptor CD26. Cell Host & Microbe. 2014;16(3):328-337
  101. [35] Korean Centers for Disease Control and Prevention. Middle East respiratory syndrome
  102. coronavirus outbreak in the republic of Korea. Osong Public Health and Research
  103. Perspectives. 2015;4:269-278
  104. [36] Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, NavarreteMacias
  105. I, Liang E, Wells H, Hicks A, Petrosov A, Byarugaba DK, Debbink K, Dinnon KH,
  106. Scobey T, Randell SH, Yount BL, Cranfield M, Johnson CK, Baric RS, Lipkin WI, Mazet
  107. JAK. Further evidence for bats as the evolutionary source of Middle East respiratory
  108. syndrome coronavirus. MBio. 2017;8(2). pii: e00373-17. DOI: 100.1128/mBio.00373-17
  109. [37] Bres P. The epidemic of Ebola haemorrhagic fever in Sudan and Zaire, 1976: Introductory
  110. note. Bulletin of the World Health Organization. 1978;56:245
  111. [38] Van Kerkhove MD, Bento AI, Mills HL, Ferguson NM, Donnelly CA. A review of epidemiological
  112. parameters from Ebola outbreaks to inform early public health decisionmaking.
  113. Scientific Data. 2015;2:150019. DOI: 10.1038/sdata.2015.19
  114. [39] Swanepoel R, Leman PA, Burt FJ, Zachariades NA, Braack LE, Ksiazek TG, Rollin PE,
  115. Zaki SR, Peters CJ. Experimental inoculation of plants and animals with Ebola virus.
  116. Emerging Infectious Diseases. 1996;2:321-325
  117. [40] Müller MA, Devignot S, Lattwein E, Corman VM, Maganga GD, Gloza-Rausch F, Binger
  118. T, Vallo P, Emmerich P, Cottontail VM, Tschapka M, Oppong S, Drexler JF, Weber F,
  119. Leroy EM, Drosten E. Evidence for widespread infection of African bats with CrimeanCongo
  120. hemorrhagic fever-like viruses. Nature Scientific Reports. 2016;6:26637. DOI:
  121. 10.1038/srep26637
  122. [41] Afelt A, Lacroix A, Zawadzka-Pawlewska U, Pokojski W, Buchy P, Frutos R. Distribution
  123. of bat-borne viruses and environment patterns. Infection, Genetics and Evolution.
  124. 2018;58:181-191
  125. [42] Janzen DH. When is it coevolution? Evolution. 1980;34:611-612
  126. [43] Laanto E, Hoikkala V, Ravantti J, Sundberg LR. Long-term genomic coevolution of hostparasite
  127. interaction in the natural environment. Nature Communications. 2017;8:111
  128. [44] Papkou A, Gokhale CS, Traulsen A, Schulenburg H. Host-parasite coevolution: Why
  129. changing population size matters. Zoology. 2016;119:330-338
  130. [45] Serra-Cobo J, López-Roig M, Seguí M, Sánchez LP, Nadal J, Borrás M, Lavenir RI, Bourhy
  131. H. Ecological factors associated with European bat Lyssavirus Seroprevalence in Spanish
  132. bats. PLoS One. 2013;8(5):e64467
  133. [46] Luis AD, Hayman DTS, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, Mills JN, Timonin
  134. ME, Willis CK, Cunningham AA, Fooks AR, Rupprecht CE, Wood JL, Webb CT. A
  135. comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?
  136. Proceedings of the Royal Society B. 2013;280:20122753
  137. [47] Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and
  138. viral traits predict zoonotic spillover from mammals. Nature. 2017;546:646-650
  139. [48] Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ. A molecular phylogeny
  140. for bats illuminates biogeography and the fossil record. Science. 2005;307:580-584
  141. [49] Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z,
  142. Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao
  143. J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang
  144. LF, Wang J. Comparative analysis of bat genomes provides insight into the evolution of
  145. flight and immunity. Science. 2013;339:456-460
  146. [50] Miller MR, McMinn RJ, Misra V, Schountz T, Müller MA, Kurth A, Munster VJ. Broad
  147. and temperature independent replication potential of Filoviruses on cells derived from
  148. old and new world bat species. The Journal of Infectious Diseases. 2016;214(S3):297-302
  149. [51] Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, Cowled C, Ng JHJ, Mok L,
  150. Michalski WP, Mendenhall IH, Tachedjian G, Wang LF, Baker ML. 2016. Contraction of
  151. the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proceedings
  152. of the National Academy of Sciences of the United States of America. 2016;113:2696-2701
  153. [52] Turmelle AS, Allen LC, Jackson FR, Kunz TH, Rupprecht CE, McCracken GF. Ecology of
  154. rabies virus exposure in colonies of Brazilian free-tailed bats (Tadarida brasiliensis) at natural
  155. and man-made roosts in Texas. Vector Borne and Zoonotic Diseases. 2010;10:165-175
  156. [53] Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses
  157. in the aftermath of SARS. Antiviral Research. 2014;101:45-56
  158. [54] Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronaviruses. Virology Journal. 2015;
  159. 12:221
  160. [55] Lau SKP, Ahmed SS, Tsoi HW, Yeung HC, Li KSM, Fan RYY, Zhao PSH, Lau CCC, Lam
  161. CSF, Choi KKF, Chan BCH, Cai JP, Wong SSY, Chen H, Zhang HL, Zhang L, Wang M,
  162. Woo PCY, Yuen KY. Bats host diverse parvoviruses as possible origin of mammalian
  163. dependoparvoviruses and source for bat-swine interspecies transmission. The Journal
  164. of General Virology. 2017;98:3046-3059
  165. [56] Banyard AC, Fooks AR. The impact of novel lyssavirus discovery. Microbiology Australia.
  166. 2017;38:17-21
  167. [57] Delmas O, Holmes EC, Talbi C, Larrous F, Dacheux L, Bouchier C, Bourhy H. Genomic
  168. diversity and evolution of the lyssaviruses. PLoS One. 2008;3(4):e2057. DOI: 10.1371/journal.pone.0002057
  169. [58] Serra-Cobo J, López-Roig M. Bats and emerging infections: An ecological and virological
  170. puzzle. In: Rezza G, Ippolito G, editors. Emerging and Re-emerging Viral Infections.
  171. Advances in Experimental Medicine and Biology. Vol. 972. Cham: Springer; 2016
  172. [59] Hristov NI, Betke M, Theriault DEH, Bagchi A, Kunz TH. Seasonal variation in colony
  173. size of Brazilian free-tailed bats at Carlsbad cavern based on thermal imaging. Journal of
  174. Mammalogy. 2010;91:183-192
  175. [60] Willis CK, Brigham RM. Social thermoregulation exerts more influence than microclimate
  176. on forest roost preferences by a cavity-dwelling bat. Behavioral Ecology and
  177. Sociobiology. 2007;62:97-108
  178. [61] Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF. Experimental
  179. Hendra virus infection in pregnant guinea- pigs and fruit bats (Pteropus poliocephalus).
  180. Journal of Comparative Pathology. 2000;122:201-207
  181. [62] Blackwood JC, Streickerd DG, Altizerd S, Rohani P. Resolving the roles of immunity,
  182. pathogenesis, and immigration for rabies persistence in vampire bats. Proceedings of
  183. the National Academy of Sciences of the United States of America. 2013;110:20837-20842
  184. [63] Amengual B, Bourhy H, López-Roig M, Serra-Cobo J. Temporal dynamics of European
  185. bat Lyssavirus type1 and survival of Myotis myotis bats in natural colonies. PLoS One.
  186. 2007;6:e566
  187. [64] Kamins AO, Rowcliffe JM, Ntiamoa-Baidu Y, Cunningham AA, Wood JL, Restif O.
  188. Characteristics and risk perceptions of Ghanaians potentially exposed to bat-borne zoonoses
  189. through bushmeat. EcoHealth. 2015;12:104-120
  190. [65] Mann E, Streng S, Bergeron J, Kircher A. A review of the role of food and the food system
  191. in the transmission and spread of Ebolavirus. PLoS Neglected Tropical Diseases.
  192. 2015;9(12):e0004160
  193. [66] Murray KA, Daszak P. Human ecology in pathogenic landscapes: Two hypotheses on
  194. how land use change drives viral emergence. Current Opinion in Virology. 2013;3:79-83
  195. [67] Liu S, Chan TC, Chu YT, Wu JT, Geng X, Zhao N, Cheng W, Chen E, King CC. Comparative
  196. epidemiology of human infections with Middle East respiratory syndrome and severe
  197. acute respiratory syndrome coronaviruses among healthcare personnel. PLoS One.
  198. 2016;11:e0149988. DOI: 10.1371/journal.pone.0149988
  199. [68] Ito F, Bernard E, Torres RA. What is for dinner? First report of human blood in the diet of
  200. the hairy-legged vampire bat Diphylla ecaudata. Acta Chiropterologica. 2016;18:509-515
  201. [69] World Bank. 2017. Available from: http://data.worldbank.org/indicator/AG.LND.AGRI.ZS
  202. [70] Reuter KE, Wills AR, Lee RW, Cordes EE, Sewall BJ. Using stable isotopes to infer the
  203. impacts of habitat change on the diets and vertical stratification of frugivorous bats in
  204. Madagascar. PLoS One. 2016;11(4):e0153192
  205. [71] Lacroix A, Duong V, Hul V, San S, Davun H, Omaliss K, Chea S, Hassanin A, Theppangna W,
  206. Silithammavong S, Khammavong K, Singhalath S, Greatorex Z, Fine AE, Goldstein T,
  207. Olson S, Joly DO, Keatts L, Dussart P, Afelt A, Frutos R, Buchy P. Genetic diversity
  208. of coronavirus in bats in Lao PDR and Cambodia. Infection, Genetics and Evolution.
  209. 2017;48:10-18
  210. [72] Lacroix A, Duong V, Hul V, San S, Davun H, Omaliss K, Chea S, Hassanin A, Theppangna W,
  211. Silithammavong S, Khammavong K, Singhalath S, Afelt A, Greatorex Z, Fine AE,
  212. Goldstein T, Olson S, Joly DO, Keatts L, Dussart P, Afelt A, Frutos R, Buchy P. Diversity
  213. of bat astroviruses in Lao PDR and Cambodia. Infection, Genetics and Evolution.
  214. 2017;47:41-50
  215. [73] IUCN. 2017. Available from: http://www.iucnredlist.org/
  216. [74] Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, Aldrich S,
  217. Harrington T, Formenty P, Loh EH, Machalaba CC, Thomas MJ, Heymann DL. Ecology
  218. of zoonoses: Natural and unnatural histories. The Lancet. 2012;380:1936-1945
Zacytuj dokument
-