×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

A method for the analysis of the geometrical relationship between white matter pathology and the vascular architecture of the brain

Artykuł
Czasopismo : NEUROIMAGE   Tom: 22, Zeszyt: 4, Strony: 1671-1678
Dorota Kozińska [1] , C Holland , K Krissian , C Westin , C Guttman
2004 angielski
Identyfikatory
-
Słowa kluczowe
-
Abstrakty ( angielski )
-
A novel method for the visual and quantitative analysis of the geometrical relationship between the vascular architecture of the brain and white matter pathology is presented. The cerebro vascular system is implicated in the pathogenesis of many diseases of the cerebral white matter, for example, stroke, microcerebrovascular disease, and multiple sclerosis (MS). In our work, white matter lesions and vessels are depicted using magnetic resonance imaging (MRI) and extracted using image analysis techniques. We focus on measuring distance relationships between white matter lesions and vessels, and distribution of lesions with respect to vessel caliber. Vascular distance maps are generated by computing for each voxel the Euclidean distance to the closest vessel. Analogously, radius maps assign the radius of the closest vessel to each voxel in the image volume. The distance and radius maps are used to analyze the distribution of lesions with respect to the vessels' locations and their calibers. The method was applied to three MS patients to demonstrate its functionality and feasibility. Preliminary findings indicate that larger MS lesions tend to be farther from detected vessels and that the caliber of the vessels nearest to larger lesions tends to be smaller, suggesting a possible role of relative hypoperfusion or hypoxia in lesion formation.
Bibliografia
-
  1. Ambrioso and Soner, 1996, Ambrioso L., Soner H.M., Level set approach to mean curvature flow in arbitrary codimension, J. Differ. Geom. 43, 1996, 693 - 737
  2. Benson et al., 2002, Benson R.R., Guttmann C.R.G., Wei X., Warfield S.K., Hall C., Schmidt J.A., Kikinis R., Wolfson L.I., Older people with impaired mobility have specific loci of periventricular abnormality on MRI, Neurology 58, 2002, 48 - 55
  3. Borgefors, 1984, Borgefors G., Distance transformations in arbitrary dimensions, Comput. Vis. Graph. Image Process. 27, 1984, 321 - 345
  4. Courville, 1968, Courville C.B., Acute lesions of multiple sclerosis—Possible significance of vascular changes, J. Neuropathol. Exp. Neurol. 27, 1, 1968, 159
  5. Danielsson, 1980, Danielsson P.E., Euclidean distance mapping, Comp. Graph. Image Process. 14, 1980, 227 - 248
  6. Gonzalez and Woods, 1993a, Gonzalez R.C., Woods R.E., Digital Image Processing, 1993, 458, Addison-Wesley Publishing Company Inc, Boston
  7. Gonzalez and Woods, 1993b, Gonzalez R.C., Woods R.E., Digital Image Processing, 1993, 491, Addison-Wesley Publishing Company Inc, Boston
  8. Guttmann et al., 2000, Guttmann C.R.G., Benson R., Warfield S.K., Wei X., Anderson M.C., Hall C.B., Abu-Hasaballah K., Mugler J.P., III, Wolfson L., White matter abnormalities in mobility-impaired older persons, Neurology 54, 2000, 1277 - 1283
  9. Khoury et al., 2000, Khoury S.J., Guttmann C.R.G., Orav J., Kikins R., Jolesz F.A., Weiner H.L., Changes in activated T cells in the blood correlate with disease activity in multiple sclerosis, Arch. Neurol. 57, 2000, 1183
  10. Kidd et al., 1999, Kidd D., Barkhof F., McConnel R., Algra P.R., Allen E.I.V., Revesz T., Cortical lesions in multiple sclerosis, Brain 122, 1999, 17 - 26
  11. Kozinska et al., 1997, Kozinska D., Tretiak O., Nissanov J., Ozturk C., Multidimensional alignment using the Euclidean distance transform, Graph Models Image Process. 59, 6, 1997, 373 - 387
  12. Krissian and Westin, 2003, Krissian K., Westin C.F., Fast and accurate redistancing for level set methods, EUROCAST NeuroImaging Workshop Las Palmas Spain, Ninth International Conference on Computer Aided Systems Theory, 2003, 48 - 51, Feb
  13. Lassmann, 2003, Lassmann H., Hypoxia-like tissue injury as a component of multiple sclerosis lesions, J. Neurol. Sci. 206, 2, 2003, 187 - 191
  14. Lee et al., 1999, Lee M.A., Spacial mapping of T2 and gadolinium-enhancing T1 lesion volumes in multiple sclerosis: evidence foe distinct mechanisms of lesion genesis, Brain 122, Pt. 7, 1999, 1261 - 1270
  15. Lorigo et al., 2001, Lorigo L., Faugeras O.D., Grimson W., Keriven R., Kikinis R., Nabavi A., Westin C.F., Curves: curve evolution for vessel segmentation, Med. Image Anal. 5, 2001, 195 - 206
  16. Lucchinetti et al., 2000, Lucchinetti C., Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination, Ann. Neurol. 47, 6, 2000, 707 - 717
  17. Lumsden, 1970, Lumsden C.E., The neuropathology of multiple sclerosis, Vinken P.J., Bruyn G.W., Handbook of Clinical Neurology vol. 9, 1970, 217 - 309, North Holland Publishing Co, Amsterdam
  18. Miller et al., 1998, Miller D.H., Grossman R.I., Reingold S.C., McFarland H.F., The role of magnetic resonance techniques in understanding and managing multiple sclerosis, Brain 121, 1998, 3 - 24
  19. Narayanan et al., 1997, Narayanan S., Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions, Ann. Neurol. 41, 3, 1997, 385 - 391
  20. Osher and Sethian, 1988, Osher S., Sethian J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulation, J. Comput. Phys. 79, 1, 1988, 12 - 49
  21. Paty and McFarland, 1998, Paty D.W., McFarland H., Magnetic resonance techniques to monitor the long term evolution of multiple sclerosis pathology and to monitor definitive clinical trials, J. Neurol. Neurosurg. Psychiatry 64, Suppl. 1, 1998, S47 - S51
  22. Putnam, 1935, Putnam T.J., Studies in multiple sclerosis: ‘encephalitis’ and sclerotic plaques produced by venular obstruction, Arch. Neurol. Psychiatry (Chic) 33, 1935, 929 - 940
  23. Reichenbach et al., 1997, Reichenbach J.R., Venkatesan R., Schillinger D.J., Kido D.K., Haacke E.M., Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent, Radiology 204, 1, 1997, 272 - 277
  24. Rosenfeld and Pfaltz, 1968, Rosenfeld A., Pfaltz J., Distance functions on digital pictures, Pattern Recogn. 1, 1968, 33 - 61
  25. Sethian, 1999, Sethian J.A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, 2nd ed., 1999, Cambridge Univ. Press, Cambridge
  26. Sperling et al., 2001, Sperling R.A., Guttmann C.R.G., Hohol M.J., Regional magnetic resonance imaging lesion burden and cognitive function in multiple sclerosis: a longitudinal study, Arch. Neurol. 58, 1, 2001, 115 - 121
  27. Tan et al., 2000, Tan I.L., van Walderveen R.A., Reichenbach J.R., Manoliu R.A., Barkhof F., MR venography of multiple sclerosis, AJNR 21, 2000, 1039 - 1042
  28. Warfield et al., 1995, Warfield S., Dengler J., Zaers J., Guttmann C.R., Wells W.M., Ettinger G.J., Hiller J., Kikinis R., Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesion, J. Image Guid. Surg. 1, 6, 1995, 326 - 338
  29. Wei et al., 2002, Wei X., Warfield S., Zou K.H., Wu Y., Li X., Guimond A., Mugler J.P., III, Benson R.R., Wolfson L., Weiner H.L., Guttmann C.R.G., Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy, JMRI 15, 2002, 203 - 209
  30. Weiner et al., 2002, Weiner H.L., Guttmann C.R.G., Khoury S.J., Serial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage, J. Neuroimmunol. 104, 2, 2000, 164 - 173
  31. Wells et al., 1996, Wells W.M., Viola P., Atsumi H., Nakajima S., Kikins R., Multi-modal volume registration by maximization of mutual information, Med. Image Anal. 1, 1996, 35 - 51
Zacytuj dokument
-