×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

BTLCP proteins: a novel family of bacterial transglutaminase-like cysteine proteinases

Artykuł
Czasopismo : TRENDS IN BIOCHEMICAL SCIENCES   Tom: 29, Zeszyt: 29, Strony: 392-395
Krzysztof Ginalski [1] , Lisa Kinch , Leszek Rychlewski , Nick Grishin
2004 angielski
Identyfikatory
-
Abstrakty ( angielski )
-
Using sequence similarity searches and top-of-the-range fold-recognition methods, we have identified a novel family of bacterial transglutaminase-like cysteine proteinases (BTLCPs) with an invariant Cys-His-Asp catalytic triad and a predicted N-terminal signal sequence. This family of previously uncharacterized hypothetical proteins encompasses sequences of unknown function from DUF920 (in the Pfam database) and COG3672. BTLCPs are predicted to possess the papain-like cysteine proteinase fold and catalyze post-translational protein modification through transamidase, acetylase or hydrolase activity. Inspection of neighboring genes encoding BTLCPs suggests a link between this predicted activity and a type-I secretion system resembling ATP-binding cassette exporters of toxins and proteases involved in bacterial pathogenicity.
Bibliografia
-
  1. 1, Murzin A.G., SCOP: a structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol. 247, 1995, 536 - 540
  2. 2, Lorand L., Graham R.M., Transglutaminases: crosslinking enzymes with pleiotropic functions, Nat. Rev. Mol. Cell Biol. 4, 2003, 140 - 156
  3. 3, Rawlings, N.D. , et al. (2004) MEROPS: the peptidase database. , Nucleic Acids Res. 32 Databade issue, D160–D164.
  4. 4, Bateman, A. , et al. (2004) The Pfam protein families database. , Nucleic Acids Res. 32 Databade issue, D138–D141.
  5. 5, Ginalski K., ORFeus: detection of distant homology using sequence profiles and predicted secondary structure, Nucleic Acids Res. 31, 2003, 3804 - 3807
  6. 6, Ginalski, K. , et al. Detecting distant homology with Meta-BASIC. , Nucleic Acids Res. (in press).
  7. 7, Sinclair J.C., Structure of arylamine N-acetyltransferase reveals a catalytic triad, Nat. Struct. Biol. 7, 2000, 560 - 564
  8. 8, Sandy J., The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis – an enzyme which inactivates the anti-tubercular drug, isoniazid, J. Mol. Biol. 318, 2002, 1071 - 1083
  9. 9, Marchler-Bauer A., CDD: a curated Entrez database of conserved domain alignments, Nucleic Acids Res. 31, 2003, 383 - 387
  10. 10, Letunic, I. , et al. (2004) SMART 4.0: towards genomic data integration. , Nucleic Acids Res. 32 Database issue, D142–D144.
  11. 11, Ginalski K., 3D-Jury: a simple approach to improve protein structure predictions, Bioinformatics 19, 2003, 1015 - 1018
  12. 12, Kinch L.N., CASP5 assessment of fold recognition target predictions, Proteins 53, Suppl. 6, 2003, 395 - 409
  13. 13, Ginalski K., Rychlewski L., Detection of reliable and unexpected protein fold predictions using 3D-Jury, Nucleic Acids Res. 31, 2003, 3291 - 3292
  14. 14, Tatusov R.L., The COG database: an updated version includes eukaryotes, BMC Bioinformatics 4, 2003, 41
  15. 15, Makarova K.S., A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases, Protein Sci. 8, 1999, 1714 - 1719
  16. 16, Mongin E., The Anopheles gambiae genome: an update, Trends Parasitol. 20, 2004, 49 - 52
  17. 17, Yee V.C., Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII, Proc. Natl. Acad. Sci. U. S. A. 91, 1994, 7296 - 7300
  18. 18, Romero P.R., Karp P.D., Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases, Bioinformatics 20, 2004, 709 - 717
  19. 19, von Mering C., STRING: a database of predicted functional associations between proteins, Nucleic Acids Res. 31, 2003, 258 - 261
  20. 20, Binet R., Protein secretion by Gram-negative bacterial ABC exporters - a review, Gene 192, 1997, 7 - 11
  21. 21, Welch R.A., Pellett S., Transcriptional organization of the Escherichia coli hemolysin genes, J. Bacteriol. 170, 1988, 1622 - 1630
  22. 22, Issartel J.P., Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation, Nature 351, 1991, 759 - 761
  23. 23, Pei J., PCMA: fast and accurate multiple sequence alignment based on profile consistency, Bioinformatics 19, 2003, 427 - 428
  24. 24, Ginalski K., Rychlewski L., Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment, Proteins 53, Suppl 6, 2003, 410 - 417
Zacytuj dokument
-