×

Serwis używa ciasteczek ("cookies") i podobnych technologii m.in. do utrzymania sesji i w celach statystycznych. • Ustawienia przeglądarki dotyczące obsługi ciasteczek można swobodnie zmieniać. • Całkowite zablokowanie zapisu ciasteczek na dysku komputera uniemożliwi logowanie się do serwisu. • Więcej informacji: Polityka cookies OPI PIB

×

Regulamin korzystania z serwisu PBN znajduję się pod adresem: Regulamin serwisu

Szukaj wśród:
Dane publikacji

DCC proteins: a novel family of thiol-disulfide oxidoreductases

Artykuł
Czasopismo : TRENDS IN BIOCHEMICAL SCIENCES   Tom: 29, Zeszyt: 29, Strony: 339-342
Krzysztof Ginalski [1] , Lisa Kinch , Leszek Rychlewski , Nick Grishin
2004 angielski
Identyfikatory
-
Abstrakty ( angielski )
-
Using top-of-the-range fold-recognition methods, we have assigned a thioredoxin-like structure to a family of previously uncharacterized hypothetical proteins of bacterial origin. The DCC family, named after the conserved N-terminal DxxCxxC motif, encompasses proteins of unknown function from DUF393 (in Pfam database) and COG3011. The presence of two invariant potentially catalytic cysteine residues indicates that DCC proteins function as thiol-disulfide oxidoreductases.
Bibliografia
-
  1. 1, Collin V., The , Arabidopsis plastidial thioredoxins: new functions and new insights into specificity, J. Biol. Chem. 278, 2003, 23747 - 23752
  2. 2, Bateman A., The Pfam protein families database, Nucleic Acids Res. 32, 2004, D138 - D141
  3. 3, Ginalski K., ORFeus: detection of distant homology using sequence profiles and predicted secondary structure, Nucleic Acids Res. 31, 2003, 3804 - 3807
  4. 4, Ginalski, K. , et al. Detecting distant homology with Meta-BASIC. , Nucleic Acids Res. (in press).
  5. 5, Nordstrand K., NMR structure of oxidized glutaredoxin 3 from , Escherichia coli, J. Mol. Biol. 303, 2000, 423 - 432
  6. 6, Altschul S.F., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25, 1997, 3389 - 3402
  7. 7, Ginalski K., 3D-Jury: a simple approach to improve protein structure predictions, Bioinformatics 19, 2003, 1015 - 1018
  8. 8, Kinch L.N., CASP5 assessment of fold recognition target predictions, Proteins 53, Suppl 6, 2003, 395 - 409
  9. 9, Ginalski K., Rychlewski L., Detection of reliable and unexpected protein fold predictions using 3D-Jury, Nucleic Acids Res. 31, 2003, 3291 - 3292
  10. 10, Tatusov R.L., The COG database: an updated version includes eukaryotes, BMC Bioinformatics 4, 2003, 41
  11. 11, Martin W., Evolutionary analysis of , Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus, Proc. Natl. Acad. Sci. U. S. A. 99, 2002, 12246 - 12251
  12. 12, Adachi, J. and Hasegawa, M. (1996) Molphy: programs for molecular phylogenetics based on maximum likelihood. In , Computer Science Monographs, No. 28.
  13. 13, Ritz D., Beckwith J., Roles of thiol-redox pathways in bacteria, Annu. Rev. Microbiol. 55, 2001, 21 - 48
  14. 14, McCarthy A.A., Crystal structure of the protein disulfide bond isomerase, DsbC, from , Escherichia coli, Nat. Struct. Biol. 7, 2000, 196 - 199
  15. 15, Lima W.F., Human RNase H1 activity is regulated by a unique redox switch formed between adjacent cysteines, J. Biol. Chem. 278, 2003, 14906 - 14912
  16. 16, von Mering C., STRING: a database of predicted functional associations between proteins, Nucleic Acids Res. 31, 2003, 258 - 261
  17. 17, Popham D.L., Setlow P., Cloning, nucleotide sequence, mutagenesis, and mapping of the , Bacillus subtilis pbpD gene, which codes for penicillin-binding protein 4, J. Bacteriol. 176, 1994, 7197 - 7205
  18. 18, Pei J., PCMA: fast and accurate multiple sequence alignment based on profile consistency, Bioinformatics 19, 2003, 427 - 428
  19. 19, Ginalski K., Rychlewski L., Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment, Proteins 53, 2003, 410 - 417
  20. 20, Agianian B., Structure of a , Drosophila sigma class glutathione , S-transferase reveals a novel active site topography suited for lipid peroxidation products, J. Mol. Biol. 326, 2003, 151 - 165
Zacytuj dokument
-